
此条目的主題是数学当中的一种函数或运算。关于电子系统设计与信号传输中的差分传输,請見「
差分信号」。
差分,又名差分函數或差分運算,一般是指有限差分(英語:Finite difference),是数学中的一个概念,将原函数
映射到
。差分運算,相應於微分運算,是微积分中重要的一个概念。
差分分为前向差分和逆向差分。
函数的前向差分通常简称为函数的差分。对于函数
,如果在等距节点:


则称
,函数在每个小区间上的增量
为
一阶差分。[1]
在微积分学中的有限差分(finite differences),前向差分通常是微分在离散的函数中的等效运算。差分方程的解法也与微分方程的解法相似。当
是多项式时,前向差分为Delta算子(称
为差分算子[2]),一种线性算子。前向差分会将多项式阶数降低 1。
对于函数
,如果:

则称
为
的一阶逆向差分。
一阶差分的差分为二阶差分,二阶差分的差分为三阶差分,其余类推。记:
为
的
阶差分。
如果
|
|
|
|
根据数学归纳法,有
=\sum _{i=0}^{n}{n \choose i}(-1)^{n-i}f(x+i)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/378a9d98e057cb2afcfe03160ed26d7598cf4586)
其中,
为二项式系数。
特别的,有
=f(x+2)-2f(x+1)+f(x)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/002e6ddd14e4ec8068b1d97640ed68e91d1012e3)
前向差分有时候也称作数列的二项式变换
对比解析函数中的微分的属性,差分的性质有:

- 线性:如果
和
为常数,则有

- 乘法定则(此处步长
):




- 或




《自然哲學的數學原理》的第三編“宇宙體系”的引理五的图例。這裡在橫坐標上有6個點H,I,K,L,M,N,對應著6個值A,B,C,D,E,F,生成一個多項式函數對這6個點上有對應的6個值,計算任意點S對應的值R。牛頓給出了間距為單位值和任意值的兩種情況。
牛頓插值公式也叫做牛頓級數,由“牛頓前向差分方程”的項組成,得名於伊薩克·牛頓爵士,最早发表为他在1687年出版的《自然哲學的數學原理》中第三編“宇宙體系”的引理五[3],此前詹姆斯·格雷果里於1670年和牛頓於1676年已經分別獨立得出這個成果。一般稱其為連續泰勒展開的離散對應。
當
值間隔為單位步長
時,有:
+{\frac {x-a-1}{2}}\left(\Delta ^{2}[f](a)+\cdots \right)\right]\\&=f(a)+\sum _{k=1}^{n}\Delta ^{k}[f](a)\prod _{i=1}^{k}{\frac {[(x-a)-i+1]}{i}}\\&=\sum _{k=0}^{n}{x-a \choose k}~\Delta ^{k}[f](a)\\\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/eaaae992f781f01dc21b5796c9d397a09060b194)
這成立於任何多項式函數和大多數但非全部解析函數。這裡的表達式

是二項式係數,其中的
是“下降階乘冪”(另一種常見的標記法為
),空積
被定義為
。這裡的
是“前向差分”的特定情況,即間距
。
為了展示牛頓的這個公式是如何使用的,舉例數列 1, 4, 9,16...的前幾項,可以找到一個多項式重新生成這些值,首先計算一個差分表,接著將對應於x0(標示了下劃線)的這些差分代換入公式,

對於x值間隔為非一致步長的情況,牛頓計算均差,在間隔一致但非單位量時,即上述前向差分的一般情況,插值公式為:
+{\frac {x-a-h}{2h}}\left(\Delta _{h}^{2}[f](a)+\cdots \right)\right]\\&=f(a)+\sum _{k=1}^{n}{\frac {\Delta _{h}^{k}[f](a)}{k!h^{k}}}\prod _{i=0}^{k-1}[(x-a)-ih]\\&=f(a)+\sum _{k=1}^{n}{\frac {\Delta _{h}^{k}[f](a)}{k!}}\prod _{i=0}^{k-1}\left({\frac {x-a}{h}}-i\right)\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/acf264500fc988a5ec93afcba6be755b5a7c2acc)
在最終公式中hk被消去掉了,對於非一致步長的情況則不會出現階乘。