
关于与「
数列极限」標題相近或相同的条目,請見「
极限」。
数列極限(英語:limit of a sequence)為某些数列才擁有的特殊值,當數列的下標越來越大的時候,數列的值也就越接近那個特殊值。
從上面的定義可以證明,對實數數列
來說,若

則其極限
一定為实数 ,因為假設
的虛部
的話,則對極限定義取
的話,會存在
,使得任意的
,只要
有
![{\displaystyle |z-z_{i}|={\sqrt {{[\operatorname {Re} (z)-z_{i}]}^{2}+{|\operatorname {Im} (z)|}^{2}}}<|\operatorname {Im} (z)|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fb3586c8ed73748b215df442b8ed84cef3783b27)
這是矛盾的,所以根據反證法,
,即
。
定理 — 若數列
的極限存在,則極限是唯一的。[1]:29
根據实质条件的意義,上面的定理等價於「如果一個實數數列無界,則這個實數數列一定發散。」[1]:30
注意有界數列不一定有極限,如數列
是一個有界數列,但沒有極限。
但是當數列有界,存在一個遞增或是遞減的子數列的話,則可以證明,數列存在極限。
證明
左至右:
取
,則由前提假設,存在
使任何
只要
就有


从而

故

這樣取
,左至右就得證。
右至左:
由前提假設,對任意的
,存在
使任何
只要
就有



从而

故得證。
設
,
,則
;
;
- 若
,則
.
其中一個判斷數列是否收斂的定理,称为单调收敛定理,和實數完備性相關:單調有界數列必收斂,即是說,有上界的單調遞增數列,或是有下界的單調遞減數列,必然收斂。