积分第二中值定理是与积分第一中值定理相互独立的一个定理,属于积分中值定理。它可以用来证明Dirichlet-Abel反常Riemann积分判别法。
若f,g在[a,b]上黎曼可积且f(x)在[a,b]上单调,则存在[a,b]上的点ξ使
令g(x)=1,则原公式可化为:
进而导出:
此时易得其几何意义为: 能找到ξ∈[a,b],使得S[红]+S[蓝]=S[阴影],即S[I]=S[II]
中值定理