几个反三角函数的图形,其中,反余切以复变分析定义,因此在原点处出现不连续断点
在数学中,反三角函数(英语:inverse trigonometric function)是三角函数的反函数。
符号
等常用于
等。但是这种符号有时在
和
之间易造成混淆。
在编程中,函数
,
,
通常叫做
,
,
。很多编程语言提供两自变量atan2函数,它计算给定
和
的
的反正切,但是值域为
。
-
在笛卡尔平面上
![{\displaystyle f(x)=\arcsin x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c6bee7577ba9824e3b897aab2bafd0147153ccc3)
(红)和
![{\displaystyle f(x)=\arccos x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e33768631cff11903af64f4fb4d860f93cc0599b)
(绿)函数的常用主值的图像。
-
在笛卡尔平面上
![{\displaystyle f(x)=\arctan x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8abb93ecc03e41a22d728e43caf8004df54fb0bc)
(红)和
![{\displaystyle f(x)=\operatorname {arccot} x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/11634f23d4b159bf1ebd6be0fd2c7a02e7d7beb9)
(绿)函数的常用主值的图像。
-
在笛卡尔平面上
![{\displaystyle f(x)=\operatorname {arccsc} x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/02c4796301c0c685fe4db8c51b3577bef417d18a)
(红)和
![{\displaystyle f(x)=\operatorname {arcsec} x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c0a604aa5f99ffe679ae05980c28c192c595abe5)
(绿)函数的常用主值的图像。
下表列出基本的反三角函数。
名称
|
常用符号
|
定义
|
定义域
|
值域
|
反正弦 |
![{\displaystyle y=\arcsin x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7eb83fc5e328a407b9bdb3a6a5a9aaed8044b95c) |
![{\displaystyle x=\sin y}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5b4c6eb4b0f1eda93e8bdf14bb9561831fa20bba) |
![{\displaystyle [-1,1]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/51e3b7f14a6f70e614728c583409a0b9a8b9de01) |
|
反余弦 |
![{\displaystyle y=\arccos x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/41bf0f13cd55dd0ff3c5c7cc6258bffa5a654f0c) |
![{\displaystyle x=\cos y}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5ba775d42712a5b22b1e5e55757938cdacbdb4e5) |
![{\displaystyle [-1,1]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/51e3b7f14a6f70e614728c583409a0b9a8b9de01) |
|
反正切 |
![{\displaystyle y=\arctan x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/53b245f79e8ccc0051e708c62e797559da23d75b) |
![{\displaystyle x=\tan y}](https://wikimedia.org/api/rest_v1/media/math/render/svg/89e8af45d4e0505e79926aeabc02f3c3a2f41df3) |
![{\displaystyle \mathbb {R} }](https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc) |
|
反余切 |
![{\displaystyle y=\operatorname {arccot} x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/99ca0d666abb65de24db033220beada025c8c768) |
![{\displaystyle x=\cot y}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cd3ea9bf60e7922436e60b3f8787fe86f14d7997) |
![{\displaystyle \mathbb {R} }](https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc) |
|
反正割 |
![{\displaystyle y=\operatorname {arcsec} x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b4276eae9a683b0a9b871b0335af6e8eda2f32c5) |
![{\displaystyle x=\sec y}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7caceb104cd09d39225804b19a40f1b3bb9fbe28) |
![{\displaystyle (-\infty ,-1]\cup [1,+\infty )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5dedf8ddf2dcc93b2f0799dfd206f0064a74e94f) |
|
反余割 |
![{\displaystyle y=\operatorname {arccsc} x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/792670892a9afb014fe67c308402dc41028f88a4) |
![{\displaystyle x=\csc y}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a08a44d1e2a1f992a28b6b433847778169e81dc8) |
![{\displaystyle (-\infty ,-1]\cup [1,+\infty )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5dedf8ddf2dcc93b2f0799dfd206f0064a74e94f) |
|
(注意:某些数学教科书的作者将
的值域定为
因为当
的定义域落在此区间时,
的值域
,如果
的值域仍定为
,将会造成
,如果希望
,那就必须将
的值域定为
,基于类似的理由
的值域定为
)
如果
允许是复数,则
的值域只适用它的实部。
余角:
![{\displaystyle \arccos x={\frac {\pi }{2}}-\arcsin x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dce0f6afbdf08944616f77cda3f75a0534acde27)
![{\displaystyle \operatorname {arccot} x={\frac {\pi }{2}}-\arctan x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b9f6c81df598388b903746b528bcf1656a9a9350)
![{\displaystyle \operatorname {arccsc} x={\frac {\pi }{2}}-\operatorname {arcsec} x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e05daba0d4ae5d3629691036aa01cfa7d636d915)
负数参数:
![{\displaystyle \arcsin(-x)=-\arcsin x\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f951d2474af7cca97000aa9aeeb8a7ea9d85a1ae)
![{\displaystyle \arccos(-x)=\pi -\arccos x\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6feea81f20d37018f0861bd01b5cbea0dbf55ef0)
![{\displaystyle \arctan(-x)=-\arctan x\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/739cd22add73cdb235f2aff9fa3f8800ffd553a9)
![{\displaystyle \operatorname {arccot}(-x)=\pi -\operatorname {arccot} x\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/57bc05d8aee05c539f81b017e0b8cfe9acc86418)
![{\displaystyle \operatorname {arcsec}(-x)=\pi -\operatorname {arcsec} x\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fe26c12ec7a899df3d946a682cc1a8cb867a7bd2)
![{\displaystyle \operatorname {arccsc}(-x)=-\operatorname {arccsc} x\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/20d871a3f1ae3ed9714cccd4014a09de697e8e29)
倒数参数:
![{\displaystyle \arccos {\frac {1}{x}}\,=\operatorname {arcsec} x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/00ecb9ed74ac73c679c450a877bd97249abd284b)
![{\displaystyle \arcsin {\frac {1}{x}}\,=\operatorname {arccsc} x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c5c4fc7c48abc67143774571a90df498da1c369b)
![{\displaystyle \ x>0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/01cc492e026f73caf6c9d8f1fea14ea949e7c7a3)
![{\displaystyle \ x<0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/67498a2070bbf9cf126f3b158f33f9436cd32d78)
![{\displaystyle \ x>0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/01cc492e026f73caf6c9d8f1fea14ea949e7c7a3)
![{\displaystyle \ x<0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/67498a2070bbf9cf126f3b158f33f9436cd32d78)
![{\displaystyle \operatorname {arcsec} {\frac {1}{x}}=\arccos x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5a3625049e60febc12c2ca6d9e364d1c855de183)
![{\displaystyle \operatorname {arccsc} {\frac {1}{x}}=\arcsin x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d900c883a9827a2ac6cc860eb2d6337058b8205d)
如果有一段正弦表:
![{\displaystyle \ 0\leq x\leq 1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6b39bb3714c7819476affce89c6c2cf58e33b7ba)
![{\displaystyle \arctan x=\arcsin {\frac {x}{\sqrt {x^{2}+1}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8b962fc4081962df7662806fde8638347da211d5)
注意只要在使用了复数的平方根的时候,我们选择正实部的平方根(或者正虚部,如果是负实数的平方根的话)。
从半角公式
,可得到:
![{\displaystyle \arcsin x=2\arctan {\frac {x}{1+{\sqrt {1-x^{2}}}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f173cb904ea159768ce374a2ec6235352a2421c2)
![{\displaystyle -1<x\leq +1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5e80fc7e44369c546a9aa720c33ccccddedbf132)
![{\displaystyle \arctan x=2\arctan {\frac {x}{1+{\sqrt {1+x^{2}}}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/11c68e7819b46b8054c8235e4ac6f11658851039)
通过定义可知:
|
|
|
|
图示
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
每个三角函数都周期于它的参数的实部上,在每个
区间内通过它的所有值两次。正弦和余割的周期开始于
结束于
(这里的
是一个整数),在
到
上倒过来。余弦和正割的周期开始于
结束于
,在
到
上倒过来。正切的周期开始于
结束于
,接着(向前)在
到
上重复。余切的周期开始于
结束于
,接着(向前)在
到
上重复。
这个周期性反应在一般反函数上:
![{\displaystyle \sin y=x\ \Leftrightarrow \ (\ y=\arcsin x+2k\pi {\text{ }}\forall {\text{ }}k\in \mathbb {Z} \ \lor \ y=\pi -\arcsin x+2k\pi {\text{ }}\forall {\text{ }}k\in \mathbb {Z} \ )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/eeeca51a39062cd7469ac5bb73c449f7ae720873)
![{\displaystyle \cos y=x\ \Leftrightarrow \ (\ y=\arccos x+2k\pi {\text{ }}\forall {\text{ }}k\in \mathbb {Z} \ \lor \ y=2\pi -\arccos x+2k\pi {\text{ }}\forall {\text{ }}k\in \mathbb {Z} \ )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ea520cc5292d6a7b0de1823e415522c9c98b5f57)
![{\displaystyle \tan y=x\ \Leftrightarrow \ \ y=\arctan x+k\pi {\text{ }}\forall {\text{ }}k\in \mathbb {Z} }](https://wikimedia.org/api/rest_v1/media/math/render/svg/cbf24447531562ca5e502faf90af4fe3ee293468)
![{\displaystyle \cot y=x\ \Leftrightarrow \ \ y=\operatorname {arccot} x+k\pi {\text{ }}\forall {\text{ }}k\in \mathbb {Z} }](https://wikimedia.org/api/rest_v1/media/math/render/svg/492140d5ef762963c480d99493b27fbf9a98c852)
![{\displaystyle \sec y=x\ \Leftrightarrow \ (\ y=\operatorname {arcsec} x+2k\pi {\text{ }}\forall {\text{ }}k\in \mathbb {Z} \ \lor \ y=2\pi -\operatorname {arcsec} x+2k\pi {\text{ }}\forall {\text{ }}k\in \mathbb {Z} \ )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bddaccf45e62d1d0da44dbec0e546a8b22211b41)
![{\displaystyle \csc y=x\ \Leftrightarrow \ (\ y=\operatorname {arccsc} x+2k\pi {\text{ }}\forall {\text{ }}k\in \mathbb {Z} \ \lor \ y=\pi -\operatorname {arccsc} x+2k\pi {\text{ }}\forall {\text{ }}k\in \mathbb {Z} \ )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/062371eb6b5383492021e35b2c37253b30e90bdf)
对于实数
的反三角函数的导函数如下:
![{\displaystyle {\begin{aligned}{\frac {\mathrm {d} }{\mathrm {d} x}}\arcsin x&{}={\frac {1}{\sqrt {1-x^{2}}}};\qquad |x|<1\\{\frac {\mathrm {d} }{\mathrm {d} x}}\arccos x&{}={\frac {-1}{\sqrt {1-x^{2}}}};\qquad |x|<1\\{\frac {\mathrm {d} }{\mathrm {d} x}}\arctan x&{}={\frac {1}{1+x^{2}}}\\{\frac {\mathrm {d} }{\mathrm {d} x}}\operatorname {arccot} x&{}={\frac {-1}{1+x^{2}}}\\{\frac {\mathrm {d} }{\mathrm {d} x}}\operatorname {arcsec} x&{}={\frac {1}{|x|\,{\sqrt {x^{2}-1}}}};\qquad |x|>1\\{\frac {\mathrm {d} }{\mathrm {d} x}}\operatorname {arccsc} x&{}={\frac {-1}{|x|\,{\sqrt {x^{2}-1}}}};\qquad |x|>1\\\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e87eff4def45f5cdf78316ff9491717c5d615f5b)
举例说明,设
,得到:
![{\displaystyle {\frac {d\arcsin x}{dx}}={\frac {d\theta }{d\sin \theta }}={\frac {1}{\cos \theta }}={\frac {1}{\sqrt {1-\sin ^{2}\theta }}}={\frac {1}{\sqrt {1-x^{2}}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6033b4323854fcbcf83af3aaddf466d0d493435d)
因为要使根号内部恒为正,所以在条件加上
,其他导数公式同理可证[1]。
积分其导数并固定在一点上的值给出反三角函数作为定积分的表达式:
![{\displaystyle {\begin{aligned}\arcsin x&{}=\int _{0}^{x}{\frac {1}{\sqrt {1-z^{2}}}}\,dz,\qquad |x|\leq 1\\\arccos x&{}=\int _{x}^{1}{\frac {1}{\sqrt {1-z^{2}}}}\,dz,\qquad |x|\leq 1\\\arctan x&{}=\int _{0}^{x}{\frac {1}{z^{2}+1}}\,dz,\\\operatorname {arccot} x&{}=\int _{x}^{\infty }{\frac {1}{z^{2}+1}}\,dz,\\\operatorname {arcsec} x&{}=\int _{1}^{x}{\frac {1}{z{\sqrt {z^{2}-1}}}}\,dz,\qquad x\geq 1\\\operatorname {arccsc} x&{}=\int _{x}^{\infty }{\frac {1}{z{\sqrt {z^{2}-1}}}}\,dz,\qquad x\geq 1\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/159a7a960243f794bf28da1f3184bd2149a2080c)
当
等于1时,在有极限的域上的积分是瑕积分,但仍是良好定义的。
如同正弦和余弦函数,反三角函数可以使用无穷级数计算如下:
![{\displaystyle {\begin{aligned}\arcsin z&{}=z+\left({\frac {1}{2}}\right){\frac {z^{3}}{3}}+\left({\frac {1\cdot 3}{2\cdot 4}}\right){\frac {z^{5}}{5}}+\left({\frac {1\cdot 3\cdot 5}{2\cdot 4\cdot 6}}\right){\frac {z^{7}}{7}}+\cdots \\&{}=\sum _{n=0}^{\infty }\left[{\frac {(2n)!}{2^{2n}(n!)^{2}}}\right]{\frac {z^{2n+1}}{(2n+1)}};\qquad |z|\leq 1\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c89d945076c1fce9d92ad559ec2130fa883c5bce)
![{\displaystyle {\begin{aligned}\arccos z&{}={\frac {\pi }{2}}-\arcsin z\\&{}={\frac {\pi }{2}}-\left[z+\left({\frac {1}{2}}\right){\frac {z^{3}}{3}}+\left({\frac {1\cdot 3}{2\cdot 4}}\right){\frac {z^{5}}{5}}+\left({\frac {1\cdot 3\cdot 5}{2\cdot 4\cdot 6}}\right){\frac {z^{7}}{7}}+\cdots \right]\\&{}={\frac {\pi }{2}}-\sum _{n=0}^{\infty }\left[{\frac {(2n)!}{2^{2n}(n!)^{2}}}\right]{\frac {z^{2n+1}}{(2n+1)}};\qquad |z|\leq 1\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/31e176ffdceceb486b2bde9b798995e9544143fe)
![{\displaystyle {\begin{aligned}\arctan z&{}=z-{\frac {z^{3}}{3}}+{\frac {z^{5}}{5}}-{\frac {z^{7}}{7}}+\cdots \\&{}=\sum _{n=0}^{\infty }{\frac {(-1)^{n}z^{2n+1}}{2n+1}};\qquad |z|\leq 1\qquad z\neq i,-i\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/88c0c32203cde64397a096bd4f68691f171b989d)
![{\displaystyle {\begin{aligned}\operatorname {arccot} z&{}={\frac {\pi }{2}}-\arctan z\\&{}={\frac {\pi }{2}}-\left(z-{\frac {z^{3}}{3}}+{\frac {z^{5}}{5}}-{\frac {z^{7}}{7}}+\cdots \right)\\&{}={\frac {\pi }{2}}-\sum _{n=0}^{\infty }{\frac {(-1)^{n}z^{2n+1}}{2n+1}};\qquad |z|\leq 1\qquad z\neq i,-i\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cc6672ed424d06bc5b3153cd0f9c776cdc465431)
![{\displaystyle {\begin{aligned}\operatorname {arcsec} z&{}=\arccos \left(z^{-1}\right)\\&{}={\frac {\pi }{2}}-\left[z^{-1}+\left({\frac {1}{2}}\right){\frac {z^{-3}}{3}}+\left({\frac {1\cdot 3}{2\cdot 4}}\right){\frac {z^{-5}}{5}}+\left({\frac {1\cdot 3\cdot 5}{2\cdot 4\cdot 6}}\right){\frac {z^{-7}}{7}}+\cdots \right]\\&{}={\frac {\pi }{2}}-\sum _{n=0}^{\infty }\left[{\frac {(2n)!}{2^{2n}(n!)^{2}}}\right]{\frac {z^{-(2n+1)}}{(2n+1)}};\qquad \left|z\right|\geq -4\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d09d36851c528df3de9f33d85a376311d09057fc)
![{\displaystyle {\begin{aligned}\operatorname {arccsc} z&{}=\arcsin \left(z^{-1}\right)\\&{}=z^{-1}+\left({\frac {1}{2}}\right){\frac {z^{-3}}{3}}+\left({\frac {1\cdot 3}{2\cdot 4}}\right){\frac {z^{-5}}{5}}+\left({\frac {1\cdot 3\cdot 5}{2\cdot 4\cdot 6}}\right){\frac {z^{-7}}{7}}+\cdots \\&{}=\sum _{n=0}^{\infty }\left[{\frac {(2n)!}{2^{2n}(n!)^{2}}}\right]{\frac {z^{-(2n+1)}}{2n+1}};\qquad \left|z\right|\geq 1\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7c4732b95840d2de49c0c3c48267cccad551991e)
欧拉发现了反正切的更有效的级数:
。
(注意对
在和中的项是空积1。)
![{\displaystyle {\begin{aligned}\int \arcsin x\,dx&{}=x\,\arcsin x+{\sqrt {1-x^{2}}}+C,\qquad x\leq 1\\\int \arccos x\,dx&{}=x\,\arccos x-{\sqrt {1-x^{2}}}+C,\qquad x\leq 1\\\int \arctan x\,dx&{}=x\,\arctan x-{\frac {1}{2}}\ln \left(1+x^{2}\right)+C\\\int \operatorname {arccot} x\,dx&{}=x\,\operatorname {arccot} x+{\frac {1}{2}}\ln \left(1+x^{2}\right)+C\\\int \operatorname {arcsec} x\,dx&{}=x\,\operatorname {arcsec} x-\operatorname {sgn}(x)\ln \left|x+{\sqrt {x^{2}-1}}\right|+C=x\,\operatorname {arcsec} x+\operatorname {sgn}(x)\ln \left|x-{\sqrt {x^{2}-1}}\right|+C\\\int \operatorname {arccsc} x\,dx&{}=x\,\operatorname {arccsc} x+\operatorname {sgn}(x)\ln \left|x+{\sqrt {x^{2}-1}}\right|+C=x\,\operatorname {arccsc} x-\operatorname {sgn}(x)\ln \left|x-{\sqrt {x^{2}-1}}\right|+C\\\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/70bfb73c0e4f50348321bfce8da3aff42095c35d)
使用分部积分法和上面的简单导数很容易得出它们。
使用
,设
![{\displaystyle {\begin{aligned}u&{}=&\arcsin x&\quad \quad \mathrm {d} v=\mathrm {d} x\\\mathrm {d} u&{}=&{\frac {\mathrm {d} x}{\sqrt {1-x^{2}}}}&\quad \quad {}v=x\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fa1373f43ac9c0e7f05c6e11cb6a30535ed4528f)
则
![{\displaystyle \int \arcsin(x)\,\mathrm {d} x=x\arcsin x-\int {\frac {x}{\sqrt {1-x^{2}}}}\,\mathrm {d} x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c3cb93ea8c3b59ac1424bb91d849bd2fe63a6fc1)
换元
![{\displaystyle k=1-x^{2}.\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9cbf9adef744d68f836dc82b5a81aa6fe3a05f10)
则
![{\displaystyle \mathrm {d} k=-2x\,\mathrm {d} x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8314d0c2f7529977627f1772464b4ed8cc842908)
且
![{\displaystyle \int {\frac {x}{\sqrt {1-x^{2}}}}\,\mathrm {d} x=-{\frac {1}{2}}\int {\frac {\mathrm {d} k}{\sqrt {k}}}=-{\sqrt {k}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dfccbcbccaac9dafa9b7605b8c8927deb458188e)
换元回x得到
![{\displaystyle \int \arcsin(x)\,\mathrm {d} x=x\arcsin x+{\sqrt {1-x^{2}}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/02dbb8c82f6e6e13e552e0ae897c0a07967285d3)
![{\displaystyle \arcsin x+\arcsin y=\arcsin \left(x{\sqrt {1-y^{2}}}+y{\sqrt {1-x^{2}}}\right),xy\leq 0\lor x^{2}+y^{2}\leq 1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9adb7425b933072c2b952b5e531be7330bca0b93)
![{\displaystyle \arcsin x+\arcsin y=\pi -\arcsin \left(x{\sqrt {1-y^{2}}}+y{\sqrt {1-x^{2}}}\right),x>0,y>0,x^{2}+y^{2}>1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c36bbbb4808e539d8d4833156a3f2869d459cfe9)
![{\displaystyle \arcsin x+\arcsin y=-\pi -\arcsin \left(x{\sqrt {1-y^{2}}}+y{\sqrt {1-x^{2}}}\right),x<0,y<0,x^{2}+y^{2}>1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/eb445151918a0dc584786b5dcd9098c4fa8e8d8d)
![{\displaystyle \arcsin x-\arcsin y=\arcsin \left(x{\sqrt {1-y^{2}}}-y{\sqrt {1-x^{2}}}\right),xy\geq 0\lor x^{2}+y^{2}\leq 1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4a90a5581306d48768fac0b27574175a643aca92)
![{\displaystyle \arcsin x-\arcsin y=\pi -\arcsin \left(x{\sqrt {1-y^{2}}}-y{\sqrt {1-x^{2}}}\right),x>0,y<0,x^{2}+y^{2}>1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0130ceac5a2a2f5c3277e79c5456de0c0c847c6d)
![{\displaystyle \arcsin x-\arcsin y=-\pi -\arcsin \left(x{\sqrt {1-y^{2}}}+y{\sqrt {1-x^{2}}}\right),x<0,y>0,x^{2}+y^{2}>1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8f0a58255fea9ca67fae4446b3490bb2d12eb7a3)
![{\displaystyle \arccos x+\arccos y=\arccos \left(xy-{\sqrt {1-x^{2}}}\cdot {\sqrt {1-y^{2}}}\right),x+y\geq 0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3b46e4bbcdd22584b11870e0b1d12c5642cba5a6)
![{\displaystyle \arccos x+\arccos y=2\pi -\arccos \left(xy-{\sqrt {1-x^{2}}}\cdot {\sqrt {1-y^{2}}}\right),x+y<0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b2d838a3138c304fb6991ff2edd8c44872ece143)
![{\displaystyle \arccos x-\arccos y=-\arccos \left(xy+{\sqrt {1-x^{2}}}\cdot {\sqrt {1-y^{2}}}\right),x\geq y}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2ce13820577afe9cbdd39753908bcbac2fcd48ca)
![{\displaystyle \arccos x-\arccos y=\arccos \left(xy+{\sqrt {1-x^{2}}}\cdot {\sqrt {1-y^{2}}}\right),x<y}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a9fc853701a75085d8d870ac2d87f5b238506ec9)
![{\displaystyle \arctan \,x+\arctan \,y=\arctan \,{\frac {x+y}{1-xy}},xy<1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8555e35c09224abba7e0b2458799d24c68f514d9)
![{\displaystyle \arctan \,x+\arctan \,y=\pi +\arctan \,{\frac {x+y}{1-xy}},x>0,xy>1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/17b586708b196b9fcc5ee204f5330ce64aaa6073)
![{\displaystyle \arctan \,x+\arctan \,y=-\pi +\arctan \,{\frac {x+y}{1-xy}},x<0,xy>1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/399ed20e31cccf8cbd116f3c324ea39276181db5)
![{\displaystyle \arctan x-\arctan y=\arctan {\frac {x-y}{1+xy}},xy>-1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6410952802c4181531424e28b004747233bea7d4)
![{\displaystyle \arctan x-\arctan y=\pi +\arctan {\frac {x-y}{1+xy}},x>0,xy<-1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c0303cf168821d3bea2ec612141bb3ad4b6e2353)
![{\displaystyle \arctan x-\arctan y=-\pi +\arctan {\frac {x-y}{1+xy}},x<0,xy<-1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/300ea24272f728fcac0577d3027ac799cedadaaf)
![{\displaystyle \operatorname {arccot} x+\operatorname {arccot} y=\operatorname {arccot} {\frac {xy-1}{x+y}},x>-y}](https://wikimedia.org/api/rest_v1/media/math/render/svg/24d5c80558ab8b4133bfb43e00f10af9d8c606f7)
![{\displaystyle \operatorname {arccot} x+\operatorname {arccot} y=\operatorname {arccot} {\frac {xy-1}{x+y}}+\pi ,x<-y}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6f3dbddcf20d6f939071f24a48686ae7ac4afaa4)
![{\displaystyle \arcsin x+\arccos x={\frac {\pi }{2}},|x|\leq 1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/627c27ca9cc1b68d673d1562b7b71236f8dbeb8c)
![{\displaystyle \arctan x+\operatorname {arccot} x={\frac {\pi }{2}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d0b9ec78d9d3f1a014806fb629d2e86eb1ef1443)
- ^
设
,得到:
![{\displaystyle {\frac {d\arccos x}{dx}}={\frac {d\theta }{d\cos \theta }}={\frac {-1}{\sin \theta }}={\frac {1}{\sqrt {1-\cos ^{2}\theta }}}={\frac {-1}{\sqrt {1-x^{2}}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9c9db5c4777ccc001760effee8418be65e8cfc76)
因为要使根号内部恒为正,所以在条件加上
。
设
,得到:
![{\displaystyle {\frac {d\arctan x}{dx}}={\frac {d\theta }{d\tan \theta }}={\frac {1}{\sec ^{2}\theta }}={\frac {1}{1+\tan ^{2}\theta }}={\frac {1}{1+x^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/40a25a0ad0876bda99f78ecf7b7f07bae7778a78)
设
,得到:
![{\displaystyle {\frac {d\operatorname {arccot} x}{dx}}={\frac {d\theta }{d\cot \theta }}={\frac {-1}{\csc ^{2}\theta }}={\frac {1}{1+\cot ^{2}\theta }}={\frac {-1}{1+x^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6b0292a362cda1e75f3a1037f981ea6a2ad953f0)
设
,得到:
![{\displaystyle {\frac {d\operatorname {arcsec} x}{dx}}={\frac {d\theta }{d\sec \theta }}={\frac {1}{\sec \theta \tan \theta }}={\frac {1}{\left|x\right|{\sqrt {x^{2}-1}}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f50fa53c2bec66a2c2ac19f9ba684b1c4e8afcec)
因为要使根号内部恒为正,所以在条件加上
,比较容易被忽略是
产生的绝对值
的定义域是
,所以
,所以
要加绝对值。
设
,得到:
![{\displaystyle {\frac {d\operatorname {arccsc} x}{dx}}={\frac {d\theta }{d\csc \theta }}={\frac {-1}{\csc \theta \cot \theta }}={\frac {-1}{\left|x\right|{\sqrt {x^{2}-1}}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bf685f4061b87b776bbca415e9e9d14673a2c8af)
因为要使根号内部恒为正,所以在条件加上
,比较容易被忽略是
产生的绝对值
的定义域是
。