大q雅可比多项式
外观
大q-雅可比多项式(英語:Big q-Jacobi polynomials)是一个以基本超几何函数定义的正交多项式[1]:
正交性
[编辑]大q-雅可比多项式满足下列正交关系
极限关系
[编辑]- 大q雅可比多项式→大q拉盖尔多项式
令大q雅可比多项式中的,即得大q拉盖尔多项式
图集
[编辑]参考文献
[编辑]- Andrews, George E.; Askey, Richard, Classical orthogonal polynomials, Brezinski, C.; Draux, A.; Magnus, Alphonse P.; Maroni, Pascal; Ronveaux, A. (编), Polynômes orthogonaux et applications. Proceedings of the Laguerre symposium held at Bar-le-Duc, October 15–18, 1984., Lecture Notes in Math. 1171, Berlin, New York: Springer-Verlag: 36–62, 1985, ISBN 978-3-540-16059-5, MR 0838970, doi:10.1007/BFb0076530
- Gasper, George; Rahman, Mizan, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications 96 2nd, Cambridge University Press, 2004, ISBN 978-0-521-83357-8, MR 2128719, doi:10.2277/0521833574
- Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F., Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, 2010, ISBN 978-3-642-05013-8, MR 2656096, doi:10.1007/978-3-642-05014-5
- Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F., http://dlmf.nist.gov/18
|contribution-url=
缺少标题 (帮助), Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (编), NIST Handbook of Mathematical Functions, Cambridge University Press, 2010, ISBN 978-0521192255, MR2723248
- ^ Roelof p438