在數學中,特別是黎曼幾何跟微分流形的理論裏,音樂同構(Musical isomorphism 或典範同構 canonical isomorphism)是指(偽)黎曼流形 M 的切叢 TM 與餘切叢
之間的同構,這個同構由黎曼度量給出。不過一般地,只要流形的切叢上有一個處處非退化的雙線性形式(比如辛流形上的辛形式)便可定義這樣的同構。在帶有內積(或更一般的,非退化的雙線性形式)的有限維向量空間
,這些同構自然給出了
和其對偶空間
之間的同構,在這種情況一般稱這些映射為典範同構(canonical isomorphosm)。
這些運算在流形上的張量場理論裏也稱為指標的上升和下降。
黎曼流形 M 的黎曼度量
是一個二階的對稱、正定張量場
。在任意一點 x∈M,黎曼度量會誘導出一個映射

這映射給了點
的切空間跟餘切空間之間的一個線性同構,對任何切向量 Xx 屬於 TxM,定義

其中符號
代表 流形上的黎曼度量。這意味着,

這些線性映射的集合定義了一個叢同構

這是一個特別的微分同胚,在每個切空間上為線性映射。在截面的層次上即是切向量場到餘切向量場的同構。在一個局部坐標
下,設度量矩陣為
,逆矩陣為
,向量場
。則這個同構會將
映射到

這裏使用了愛因斯坦求和約定。
以上同構稱為降號音樂同構(flat)用符號
表示,例如以上的函數
可表示成:
;而其逆運算稱為升號(sharp)用符號
表示:降號下降指標,升號上升指標,(Gallot, Hullin & Lafontaine 2004,第75頁)。升號用局部坐標表示為:

這兩個同構的核心是 g 為處處非退化的雙線性形式,任何一個非退化的雙線性形式都可給出類似的同構,對偽黎曼流形、辛流形也有類似的同構。在辛幾何中,這個同構非常重要,哈密頓向量場便是由這個同構導出的。
同構
與其逆
稱為「音樂同構」是因為是因為常常用兩種音樂符號
來代替這些同構,比如
會寫成
,
會寫成
,它們將指標向下、向上移動。例如,流形上的向量場
經過
映射會變成餘向量場:

這裏
將
映射到
,系數的指標從上到下,所以這運算用降號符號
表示。
而餘向量
,經過
運算會變成向量

所以指標向下、向上移動好似符號降號(
)與升號(
)下降與上升一個半音的音高(Gallot, Hullin & Lafontaine 2004,第75頁)。
音樂同構可以用來定義
上無坐標形式的梯度、散度與旋度:
![{\displaystyle {\begin{aligned}\nabla f&=\left({\mathbf {d} }f\right)^{\sharp }\\\nabla \cdot F&=\star {\mathbf {d} }\star (F^{\flat })\\\nabla \times F&=\left[\star {\mathbf {d} }(F^{\flat })\right]^{\sharp }\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4020142745c4530b2d3dc8a74cd94b67435db876)
這裏
分別是
裏的函數跟向量場,
是霍奇星號算子(Marsden & Raţiu 1999,第135頁)。不難驗證這與通常坐標形式的定義是一致的。第一個等式對更一般的黎曼流形上的光滑函數也成立。而在辛流形上,第一個等式便定義了以 f 為哈密頓量的哈密頓向量場。
此外,值得指出的是可用音樂同構和霍奇星號算子把叉積與外積聯繫起來,設 v 與 w 是
中向量場,容易證明
![{\displaystyle \mathbf {v} \times \mathbf {w} =\left[\star \left(\mathbf {v} ^{\flat }\wedge \mathbf {w} ^{\flat }\right)\right]^{\sharp }.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e4cd13945ae5f45ed5caf680aa45cffb297c8432)
- Gallot, Sylvestre; Hullin, Dominique; Lafontaine, Jacques, Riemannian Geometry 3rd, Berlin, New York: Springer-Verlag, 2004, ISBN 978-3-540-20493-0 .
- Marsden, Jerrold E.; Raţiu, Tudor S., Introduction to Mechanics and Symmetry 2nd, Berlin, New York: Springer-Verlag, 1999, ISBN 978-0-387-98643-2 .