在数学中,特別是黎曼幾何跟微分流形的理論裡,音乐同构(Musical isomorphism 或典范同构 canonical isomorphism)是指(伪)黎曼流形 M 的切丛 TM 与余切丛
之间的同构,这个同构由黎曼度量给出。不過一般地,只要流形的切丛上有一个处处非退化的双线性形式(比如辛流形上的辛形式)便可定义这样的同构。在帶有內積(或更一般的,非退化的雙線性形式)的有限維向量空間
,這些同構自然給出了
和其對偶空間
之間的同構,在這種情況一般稱這些映射為典範同構(canonical isomorphosm)。
這些運算在流形上的張量場理論裡也称为指标的上升和下降。
黎曼流形 M 的黎曼度量
是一个二階的对称、正定张量场
。在任意一点 x∈M,黎曼度量會誘導出一個映射

這映射給了點
的切空間跟餘切空间之间的一个线性同构,对任何切向量 Xx 属于 TxM,定義

其中符號
代表 流形上的黎曼度量。这意味着,

这些线性映射的集合定义了一个丛同构

这是一个特别的微分同胚,在每个切空间上為線性映射。在截面的层次上即是切向量场到余切向量场的同构。在一个局部坐标
下,设度量矩阵为
,逆矩阵为
,向量場
。则这个同构會將
映射到

这里使用了爱因斯坦求和约定。
以上同构称为降号音乐同构(flat)用符號
表示,例如以上的函數
可表示成:
;而其逆運算称为升号(sharp)用符號
表示:降号下降指标,升号上升指标,(Gallot, Hullin & Lafontaine 2004,第75頁)。升号用局部坐标表示为:

这两个同构的核心是 g 为处处非退化的双线性形式,任何一个非退化的双线性形式都可给出类似的同构,对伪黎曼流形、辛流形也有类似的同构。在辛几何中,这个同构非常重要,哈密顿向量场便是由这个同构导出的。
同构
与其逆
称为“音乐同构”是因为是因为常常用兩種音樂符號
來代替這些同構,比如
會寫成
,
會寫成
,它们將指标向下、向上移动。例如,流形上的向量場
經過
映射會變成餘向量場:

這裡
將
映射到
,係數的指標從上到下,所以這運算用降號符號
表示。
而餘向量
,經過
運算會變成向量

所以指标向下、向上移动好似符号降号(
)与升号(
)下降与上升一个半音的音高(Gallot, Hullin & Lafontaine 2004,第75頁)。
音乐同构可以用来定义
上无坐标形式的梯度、散度与旋度:
![{\displaystyle {\begin{aligned}\nabla f&=\left({\mathbf {d} }f\right)^{\sharp }\\\nabla \cdot F&=\star {\mathbf {d} }\star (F^{\flat })\\\nabla \times F&=\left[\star {\mathbf {d} }(F^{\flat })\right]^{\sharp }\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4020142745c4530b2d3dc8a74cd94b67435db876)
这里
分別是
裡的函數跟向量場,
是霍奇星号算子(Marsden & Raţiu 1999,第135頁)。不难验证这与通常坐标形式的定义是一致的。第一个等式对更一般的黎曼流形上的光滑函数也成立。而在辛流形上,第一个等式便定义了以 f 为哈密顿量的哈密顿向量场。
此外,值得指出的是可用音乐同构和霍奇星号算子把叉积与外积联系起来,设 v 与 w 是
中向量场,容易证明
![{\displaystyle \mathbf {v} \times \mathbf {w} =\left[\star \left(\mathbf {v} ^{\flat }\wedge \mathbf {w} ^{\flat }\right)\right]^{\sharp }.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e4cd13945ae5f45ed5caf680aa45cffb297c8432)
- Gallot, Sylvestre; Hullin, Dominique; Lafontaine, Jacques, Riemannian Geometry 3rd, Berlin, New York: Springer-Verlag, 2004, ISBN 978-3-540-20493-0 .
- Marsden, Jerrold E.; Raţiu, Tudor S., Introduction to Mechanics and Symmetry 2nd, Berlin, New York: Springer-Verlag, 1999, ISBN 978-0-387-98643-2 .