提示:此條目的主題不是
弦函數。
正弦 |
![](//upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Sin.svg/220px-Sin.svg.png) |
性質 |
奇偶性 | 奇 |
定義域 | (-∞,∞) |
到達域 | [-1,1] |
周期 | ![{\displaystyle 2\pi }](https://wikimedia.org/api/rest_v1/media/math/render/svg/73efd1f6493490b058097060a572606d2c550a06) ( ) |
特定值 |
當x=0 | 0 |
當x=+∞ | N/A |
當x=-∞ | N/A |
最大值 | ![{\displaystyle \left(\left(2k+{\tfrac {1}{2}}\right)\pi ,1\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1c491de278446eb917b6391fc8566437df988790)
|
最小值 | ![{\displaystyle \left(\left(2k-{\tfrac {1}{2}}\right)\pi ,-1\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1413b2096869b074181849a094239f10d47d182d)
|
其他性質 |
漸近線 | N/A |
根 | ![{\displaystyle k\pi }](https://wikimedia.org/api/rest_v1/media/math/render/svg/bf859397db5c3d7bddebe20b20a69d8191f2448f) ( ) |
臨界點 | ![{\displaystyle k\pi -{\tfrac {\pi }{2}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fffe0581eec379818a0a8f8a0e56da6ee42a8f93) ( ) |
拐點 | ![{\displaystyle k\pi }](https://wikimedia.org/api/rest_v1/media/math/render/svg/bf859397db5c3d7bddebe20b20a69d8191f2448f) ( ) |
不動點 | 0 |
k是一個整數。 |
在數學中,正弦(英語:sine、縮寫
)是一種週期函數,是三角函數的一種。它的定義域是整個實數集,值域是
。它是周期函數,其最小正周期為
(
)。在自變量為
(
,其中
為整數)時,該函數有極大值1;在自變量為
(
)時,該函數有極小值-1。正弦函數是奇函數,其圖像於原點對稱。
在半個最小正周期內,正弦函數有反函數,稱為反正弦函數。
正弦的符號為
,取自拉丁文sinus,詞源是梵文的jiva(「弓弦」,如今多寫作jya)。這個詞在阿拉伯語裏轉寫為jiba(جيب),但該詞無意義,阿拉伯語又好省略元音,故只寫作jb(جب)。然而在從阿拉伯文翻譯到拉丁文時,jb被解釋為jayb(جيب),意為「胸部」或「乳房」,而拉丁文sinus便是克雷莫納的傑拉德由此詞翻譯而來。該符號最早由法國數學家阿爾貝·熱拉爾(Albert Gerard)使用(但他只使用了正弦、餘弦和正切;其餘三個符號則是被歐拉補足的)。
直角三角形,
為直角,
的角度為
, 對於
而言,a為對邊、b為鄰邊、c為斜邊
在直角三角形中,一個銳角
的正弦定義為它的對邊與斜邊的比值,也就是:
![{\displaystyle \sin \theta ={\frac {\mathrm {a} }{\mathrm {c} }}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7a494cfe3eebcfc788a99e66e2adad87bbb46f0c)
其定義與餘割函數互為倒數。
設
是平面直角坐標系xOy中的一個象限角,
是角的終邊上一點,
是P到原點O的距離,則
的正弦定義為:
![{\displaystyle \sin \alpha ={\frac {y}{r}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c90eb839a98497f7ff314682b9befa523942933e)
單位圓
圖像中給出了用弧度度量的某個公共角。逆時針方向的度量是正角而順時針的度量是負角。設一個過原點的線,同x軸正半部分得到一個角
,並與單位圓相交。這個交點的y坐標等於
。在這個圖形中的三角形確保了這個公式;半徑等於斜邊並有長度1,所以有了
。單位圓可以被認為是通過改變鄰邊和對邊的長度並保持斜邊等於1查看無限數目的三角形的一種方式。
對於大於
或小於
的角度,簡單的繼續繞單位圓旋轉。在這種方式下,正弦變成了周期為2π的周期函數:
![{\displaystyle \sin \theta =\sin \left(\theta +2\pi k\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d675b0b43b975ba3c36b76443339e11af63ff085)
對於任何角度
和任何整數
。
正弦函數(藍色)的七階泰勒公式(粉色)在以原點為中心的一個周期內緊密地逼近原函數
![{\displaystyle \sin x=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-{\frac {x^{7}}{7!}}+\cdots =\sum _{n=0}^{\infty }{\frac {(-1)^{n}x^{2n+1}}{(2n+1)!}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/20a1d4be32dec2312bf54e5f02a8a5f7c39ffcca)
由於正弦的導數是餘弦,餘弦的導數是負的正弦,因此正弦函數滿足初值問題
![{\displaystyle y''=-y,\,y(0)=0,\,y'(0)=1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7f6329ddb74d494794893217035f530ffd655e8b)
這就是正弦的微分方程定義。
正弦函數的指數定義可由歐拉公式導出:
![{\displaystyle \sin \theta ={\frac {e^{i\theta }-e^{-i\theta }}{2i}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/67b0d0fcc1c0e6c76ffe716740ff5ee5cc7f2aaa)
函數
|
sin
|
cos
|
tan
|
csc
|
sec
|
cot
|
|
|
|
|
|
|
|
![{\displaystyle \sin \left(x+y\right)=\sin x\cos y+\cos x\sin y}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e863739245ff9022e0766723a53d52f05fc06017)
![{\displaystyle \sin \left(x-y\right)=\sin x\cos y-\cos x\sin y}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e881a8119150497d49cff66cd28e3bf03aa592d6)
![{\displaystyle \sin 2\theta =2\sin \theta \cos \theta \,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c1a9a9901f4cbefa2a7d67a2b97504270668f0da)
![{\displaystyle \sin 3\theta =3\sin \theta -4\sin ^{3}\theta \,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fe2b8785f6f7d9ad1c0c0d3efe15a26f1700ad80)
![{\displaystyle \sin {\frac {\theta }{2}}=\pm \,{\sqrt {\frac {1-\cos \theta }{2}}}.\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/17f51406879bd10580d8ef4aef356a2ed2c905fc)
![{\displaystyle \sin \theta +\sin \phi =2\sin \left({\frac {\theta +\phi }{2}}\right)\cos \left({\frac {\theta -\phi }{2}}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/81fbad7cfdaa0650b1a778599b23df0931386fed)
![{\displaystyle \sin \theta -\sin \phi =2\cos \left({\theta +\phi \over 2}\right)\sin \left({\theta -\phi \over 2}\right)\;}](https://wikimedia.org/api/rest_v1/media/math/render/svg/32808e40e083a7fb62dc44bb24e04be473124f6b)
![{\displaystyle \sin \alpha ={\frac {2\tan {\frac {\alpha }{2}}}{1+\tan ^{2}{\frac {\alpha }{2}}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f4331d15e171566984437fa575f9b984b17f4507)
![{\displaystyle \int \sin cx\;dx=-{\frac {1}{c}}\cos cx\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/90927a9524ca2ebb7532b3b642442416f997074c)
![{\displaystyle \int |\sin x|\;dx=-\cos x\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/846431e6e44ad8e51f41719575ce87c1d3c855ce)
![{\displaystyle \int \sin ^{n}{cx}\;dx=-{\frac {\sin ^{n-1}cx\cos cx}{nc}}+{\frac {n-1}{n}}\int \sin ^{n-2}cx\;dx\qquad {\mbox{(for }}n>0{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9b8b9b811f6e7f9d5ab90a2bcb4a52ead77bd18b)
![{\displaystyle \int \sin ^{2}{cx}\;dx={\frac {x}{2}}-{\frac {1}{4c}}\sin 2cx={\frac {x}{2}}-{\frac {1}{2c}}\sin cx\cos cx\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8e299cc3a3d71b32d9a94abc0a2d8bdddfc7702c)
![{\displaystyle \int {\sqrt {1-\sin {x}}}\;dx=\int {\sqrt {\operatorname {cvs} {x}}}\,dx=2{\frac {\cos {\frac {x}{2}}+\sin {\frac {x}{2}}}{\cos {\frac {x}{2}}-\sin {\frac {x}{2}}}}{\sqrt {\operatorname {cvs} {x}}}=2{\sqrt {1+\sin {x}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/aec57de36d44af1514dd20cdd00aca2d628c88be)
![{\displaystyle \int x\sin cx\;dx={\frac {\sin cx}{c^{2}}}-{\frac {x\cos cx}{c}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1ba196bb420de05f3a536e722b9fa9b633ae1edb)
![{\displaystyle \int x^{n}\sin cx\;dx=-{\frac {x^{n}}{c}}\cos cx+{\frac {n}{c}}\int x^{n-1}\cos cx\;dx\qquad {\mbox{(for }}n>0{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9504df52028a00ecd0140cefe037d9c33d2dfb86)
![{\displaystyle \int _{\frac {-a}{2}}^{\frac {a}{2}}x^{2}\sin ^{2}{\frac {n\pi x}{a}}\;dx={\frac {a^{3}(n^{2}\pi ^{2}-6)}{24n^{2}\pi ^{2}}}\qquad {\mbox{(for }}n=2,4,6...{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7d006ad538fdc542282e62804c82784991ce6474)
![{\displaystyle \int {\frac {\sin cx}{x}}\;dx=\sum _{i=0}^{\infty }(-1)^{i}{\frac {(cx)^{2i+1}}{(2i+1)\cdot (2i+1)!}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1826a014302387415dd1d360bc4a9168ede65017)
![{\displaystyle \int {\frac {\sin cx}{x^{n}}}\;dx=-{\frac {\sin cx}{(n-1)x^{n-1}}}+{\frac {c}{n-1}}\int {\frac {\cos cx}{x^{n-1}}}dx\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/26c1849317a483d658b4c1089dff98b610c78758)
![{\displaystyle \int {\frac {dx}{\sin cx}}={\frac {1}{c}}\ln \left|\tan {\frac {cx}{2}}\right|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/33e9b1d708e4a982d400c2bf4ce60212c69b1273)
![{\displaystyle \int {\frac {dx}{\sin ^{n}cx}}={\frac {\cos cx}{c(1-n)\sin ^{n-1}cx}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\sin ^{n-2}cx}}\qquad {\mbox{(for }}n>1{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d96874c7eb9e64a763a34b84fc8713b5e47ae156)
![{\displaystyle \int {\frac {dx}{1\pm \sin cx}}={\frac {1}{c}}\tan \left({\frac {cx}{2}}\mp {\frac {\pi }{4}}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ce341569f2cd1bf50b4d093c9a4a5c6f236505ac)
![{\displaystyle \int {\frac {x\;dx}{1+\sin cx}}={\frac {x}{c}}\tan \left({\frac {cx}{2}}-{\frac {\pi }{4}}\right)+{\frac {2}{c^{2}}}\ln \left|\cos \left({\frac {cx}{2}}-{\frac {\pi }{4}}\right)\right|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b2ad92be2fe75f28b3a47ea3948950df8e6efcb4)
![{\displaystyle \int {\frac {x\;dx}{1-\sin cx}}={\frac {x}{c}}\cot \left({\frac {\pi }{4}}-{\frac {cx}{2}}\right)+{\frac {2}{c^{2}}}\ln \left|\sin \left({\frac {\pi }{4}}-{\frac {cx}{2}}\right)\right|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/57b478db3bb323ac13e34688e726f9c5b72fb44d)
![{\displaystyle \int {\frac {\sin cx\;dx}{1\pm \sin cx}}=\pm x+{\frac {1}{c}}\tan \left({\frac {\pi }{4}}\mp {\frac {cx}{2}}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b0e1d0c0992f04eb68ac1d4b84f8c8fd96e43064)
![{\displaystyle \int \sin c_{1}x\sin c_{2}x\;dx={\frac {\sin(c_{1}-c_{2})x}{2(c_{1}-c_{2})}}-{\frac {\sin(c_{1}+c_{2})x}{2(c_{1}+c_{2})}}\qquad {\mbox{(for }}|c_{1}|\neq |c_{2}|{\mbox{)}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7a22f66f9d1b2febaa3694002e5e277de20e5d96)
徑度
|
|
|
|
|
|
|
|
sin
|
|
|
|
|
|
|
|
角度
|
|
|
|
|
|
sin
|
|
|
|
|
|
正弦定理說明對於任意三角形,它的邊是
,
和
而相對這些邊的角是
,
和
,有:
![{\displaystyle {\frac {\sin A}{a}}={\frac {\sin B}{b}}={\frac {\sin C}{c}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e1e8929b4f629e8a791de1dedacddd8f7b6c9a7c)
也表示為:
![{\displaystyle {\frac {a}{\sin A}}={\frac {b}{\sin B}}={\frac {c}{\sin C}}=2R}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d80986c9d20c3eb3943d11776d454f6462b9b1ee)
它可以通過把三角形分為兩個直角三角形並使用正弦的上述定義證明。在這個定理中出現的公共數
是通過
,
和
三點的圓的直徑的倒數。正弦定理用於在一個三角形的兩個角和一個邊已知時計算未知邊的長度。這是三角測量中常見情況。