林德勒夫猜想
林德勒夫猜想(Lindelöf hypothesis)是一个由芬兰数学家恩斯特·雷纳德·林德勒夫提出一个关于黎曼ζ函数在临界线上增长率的猜想。[1]这猜想可由黎曼猜想导出,其形式以大O符号表述如下:
对于任意的而言,在趋近于无穷时,有
由于可由一个较小的值取代之故,因此这猜想可重述如下:
对于任意的而言,有
μ函数
[编辑]设是一个实数,则可定义为所有使得的实数当中的最小数。在这种定义下,易见对于任意的,有,而从黎曼ζ函数的函数方程可导出说。另一方面,由夫拉门–林德勒夫定理可导出说是一个凸函数。林德勒夫猜想基本就是说,,将此点和上述的性质结合,这猜想也意味著说在时,;而在时,
由于且,因此从林德勒夫对这函数的凸性可导出说。之后G·H·哈代借由将外尔估计指数和的方式用于近似函数方程的做法,将这上界降至。在那之后数名研究者用长且技术性的数学证明,将之降到稍微低于的数值。下表显示了对于这数值的改进:
μ(1/2) ≤ | μ(1/2) ≤ | 研究者 | |
---|---|---|---|
1/4 | 0.25 | Lindelöf[2] | 凸性上界 |
1/6 | 0.1667 | Hardy & Littlewood[3][4] | |
163/988 | 0.1650 | Walfisz 1924[5] | |
27/164 | 0.1647 | Titchmarsh 1932[6] | |
229/1392 | 0.164512 | Phillips 1933[7] | |
0.164511 | Rankin 1955[8] | ||
19/116 | 0.1638 | Titchmarsh 1942[9] | |
15/92 | 0.1631 | Min 1949[10] | |
6/37 | 0.16217 | Haneke 1962[11] | |
173/1067 | 0.16214 | Kolesnik 1973[12] | |
35/216 | 0.16204 | Kolesnik 1982[13] | |
139/858 | 0.16201 | Kolesnik 1985[14] | |
9/56 | 0.1608 | Bombieri & Iwaniec 1986[15] | |
32/205 | 0.1561 | Huxley[16] | |
53/342 | 0.1550 | Bourgain[17] | |
13/84 | 0.1548 | Bourgain[18] |
和黎曼猜想间的关系
[编辑]Backlund[19]在1918至1919年间,证明了说林德勒夫猜想和下述与黎曼ζ函数的零点相关的叙述等价:在趋近于无穷时,实部至少为且虚部介于和之间的零点,其数量会趋近于。
由于黎曼猜想指称在这区域中没有任何零点之故,因此黎曼猜想会导出林德勒夫猜想。目前已知虚部介于和之间的零点的数量为,因此林德勒夫猜想似乎只稍强于已知的结果,但尽管如此,人们迄今依旧无法证明林德勒夫猜想。
黎曼ζ函数的幂的平均值
[编辑]林德勒夫猜想与以下陈述等价:
对于任意的正整数和正实数而言,有以下等式:
目前已证明这等式对及成立,但的情况似乎困难许多,且依旧是个未解决的问题。
对于这积分的非病态行为,有著下列更加精确的猜想:
一般认为,对某些常数而言,有以下等式:
李特尔伍德证明了的情况,而希斯-布朗[20]借由推广英厄姆(Ingham)找到首项系数的结果[21],证明了的情况。
Conrey和Ghosh[22]推测,在时首项系数应当为
而Keating和Snaith[23]利用随机矩阵理论,对更大的情况的系数的值做出了一些猜测。目前猜想这积分的首项系数的值是某个初等因子、质数的某种乘积,和由下列数列给出的杨表的数字彼此间的乘积:
其他后果
[编辑]设为第个质数,并设为质数间隙,则一个由阿尔伯特·英厄姆证明的结果显示,若林德勒夫猜想成立,则对于任意的而言,当足够大时,有以下不等式:
对于质数间隙,一个比英厄姆的结果更强的猜想是克拉梅尔猜想,其陈述如下:[24][25]
密度假说
[编辑]
密度假说指称,其中是的零点在以及所构成的范围内的数量,且这假说可由林德勒夫猜想得出。[27][28]
更一般地,设,则已知这界限大致和长度为的短区间当中的质数的渐进公式相合。[29][30]
英厄姆在1940年证明说,[31]赫胥黎在1971年证明说;[32] 而古斯及梅纳德在2024年的一篇预印本中证明说[33][34][35]并证明说这些公式和相契合。因此古斯和梅纳德近期的成果给出了已知最接近、符合一般对黎曼猜想期望的数值,并将其界限改进至,或等价地,非病态地和成比例。
在理论上,贝克、哈曼和平茨三氏对勒让德猜想的估计的改进、对没有西格尔零点的区域的估计,以及其他的事情也是可期待的。
L函数
[编辑]黎曼ζ函数属于一类被称为L函数的一类更加一般的函数。
在2010年,约瑟夫·伯恩斯坦及安德烈·瑞斯妮可夫(Andre Reznikov)给出了估计定义在之上的L函数的次凸性值的方法;[36]同一年,阿克沙伊·文卡泰什及飞利浦·麦可给出了估计定义在和之上的L函数的次凸性值的方法;[37]而在2021年,保罗·尼尔森(Paul Nelson)估计定义在之上的L函数的值的方法。[38][39]
参见
[编辑]- Z函数中的林德勒夫猜想
注解和参考资料
[编辑]- ^ 参见Lindelöf (1908)
- ^ Lindelöf (1908)
- ^ Hardy, G. H.; Littlewood, J. E. On Lindelöf's hypothesis concerning the Riemann zeta-function. Proc. R. Soc. A. 1923: 403–412.
- ^ Hardy, G. H.; Littlewood, J. E. Contributions to the theory of the riemann zeta-function and the theory of the distribution of primes. Acta Mathematica. 1916, 41: 119–196. ISSN 0001-5962. doi:10.1007/BF02422942.
- ^ Walfisz, Arnold. Zur Abschätzung von ζ(½ + it). Nachr. Ges. Wiss. Göttingen, math.-phys. Klasse. 1924: 155–158.
- ^ Titchmarsh, E. C. On van der Corput's method and the zeta-function of Riemann (III). The Quarterly Journal of Mathematics. 1932, os–3 (1): 133–141. ISSN 0033-5606. doi:10.1093/qmath/os-3.1.133.
- ^ Phillips, Eric. The zeta-function of Riemann: further developments of van der Corput's method. The Quarterly Journal of Mathematics. 1933, os–4 (1): 209–225. ISSN 0033-5606. doi:10.1093/qmath/os-4.1.209.
- ^ Rankin, R. A. Van der Corput's method and the theory of exponent pairs. The Quarterly Journal of Mathematics. 1955, 6 (1): 147–153. ISSN 0033-5606. doi:10.1093/qmath/6.1.147.
- ^ Titchmarsh, E. C. On the order of ζ(½+ it ). The Quarterly Journal of Mathematics. 1942, os–13 (1): 11–17. ISSN 0033-5606. doi:10.1093/qmath/os-13.1.11.
- ^ Min, Szu-Hoa. On the order of 𝜁(1/2+𝑖𝑡). Transactions of the American Mathematical Society. 1949, 65 (3): 448–472. ISSN 0002-9947. doi:10.1090/S0002-9947-1949-0030996-6.
- ^ Haneke, W. Verschärfung der Abschätzung von ξ(½+it). Acta Arithmetica. 1963, 8 (4): 357–430. ISSN 0065-1036. doi:10.4064/aa-8-4-357-430 (German).
- ^ Kolesnik, G. A. On the estimation of some trigonometric sums. Acta Arithmetica. 1973, 25 (1): 7–30 [2024-02-05]. ISSN 0065-1036 (Russian).
- ^ Kolesnik, Grigori. On the order of ζ (1/2+ it ) and Δ( R ). Pacific Journal of Mathematics. 1982-01-01, 98 (1): 107–122. ISSN 0030-8730. doi:10.2140/pjm.1982.98.107.
- ^ Kolesnik, G. On the method of exponent pairs. Acta Arithmetica. 1985, 45 (2): 115–143. doi:10.4064/aa-45-2-115-143.
- ^ Bombieri, E.; Iwaniec, H. On the order of ζ (1/2+ it ). Annali della Scuola Normale Superiore di Pisa - Classe di Scienze. 1986, 13 (3): 449–472.
- ^ Huxley (2002), Huxley (2005)
- ^ Bourgain (2017)
- ^ Bourgain (2017)
- ^ Backlund (1918–1919)
- ^ Heath-Brown (1979)
- ^ Ingham (1928)
- ^ Conrey & Ghosh (1998)
- ^ Keating & Snaith (2000)
- ^ Cramér, Harald. On the order of magnitude of the difference between consecutive prime numbers. Acta Arithmetica. 1936, 2 (1): 23–46. ISSN 0065-1036. doi:10.4064/aa-2-1-23-46.
- ^ Banks, William; Ford, Kevin; Tao, Terence. Large prime gaps and probabilistic models. Inventiones Mathematicae. 2023, 233 (3): 1471–1518. ISSN 0020-9910. arXiv:1908.08613
. doi:10.1007/s00222-023-01199-0.
- ^ Trudgian, Timothy S.; Yang, Andrew. Toward optimal exponent pairs. 2023. arXiv:2306.05599
[math.NT].
- ^ 25a. aimath.org. [2024-07-16].
- ^ Density hypothesis - Encyclopedia of Mathematics. encyclopediaofmath.org. [2024-07-16].
- ^ New Bounds for Large Values of Dirichlet Polynomials, Part 1 - Videos | Institute for Advanced Study. www.ias.edu. 2024-06-04 [2024-07-16] (英语).
- ^ New Bounds for Large Values of Dirichlet Polynomials, Part 2 - Videos | Institute for Advanced Study. www.ias.edu. 2024-06-04 [2024-07-16] (英语).
- ^ Ingham, A. E. ON THE ESTIMATION OF N (σ, T ). The Quarterly Journal of Mathematics. 1940, os–11 (1): 201–202. ISSN 0033-5606. doi:10.1093/qmath/os-11.1.201 (英语).
- ^ Huxley, M. N. On the Difference between Consecutive Primes.. Inventiones Mathematicae. 1971, 15 (2): 164–170. ISSN 0020-9910. doi:10.1007/BF01418933.
- ^ Guth, Larry; Maynard, James. New large value estimates for Dirichlet polynomials. 2024. arXiv:2405.20552
[math.NT].
- ^ Bischoff, Manon. The Biggest Problem in Mathematics Is Finally a Step Closer to Being Solved. Scientific American. [2024-07-16] (英语).
- ^ Cepelewicz, Jordana. 'Sensational' Proof Delivers New Insights Into Prime Numbers. Quanta Magazine. 2024-07-15 [2024-07-16] (英语).
- ^ Bernstein, Joseph; Reznikov, Andre. Subconvexity bounds for triple L -functions and representation theory. Annals of Mathematics. 2010-10-05, 172 (3): 1679–1718. ISSN 0003-486X. S2CID 14745024. arXiv:math/0608555
. doi:10.4007/annals.2010.172.1679
(英语).
- ^ Michel, Philippe; Venkatesh, Akshay. The subconvexity problem for GL2. Publications Mathématiques de l'IHÉS. 2010, 111 (1): 171–271. CiteSeerX 10.1.1.750.8950
. S2CID 14155294. arXiv:0903.3591
. doi:10.1007/s10240-010-0025-8.
- ^ Nelson, Paul D. Bounds for standard $L$-functions. 2021-09-30. arXiv:2109.15230
[math.NT].
- ^ Hartnett, Kevin. Mathematicians Clear Hurdle in Quest to Decode Primes. Quanta Magazine. 2022-01-13 [2022-02-17] (英语).
- Backlund, R., Über die Beziehung zwischen Anwachsen und Nullstellen der Zeta-Funktion, Ofversigt Finska Vetensk. Soc., 1918–1919, 61 (9)
- Bourgain, Jean, Decoupling, exponential sums and the Riemann zeta function, Journal of the American Mathematical Society, 2017, 30 (1): 205–224, MR 3556291, S2CID 118064221, arXiv:1408.5794
, doi:10.1090/jams/860
- Conrey, J. B.; Farmer, D. W.; Keating, Jonathan P.; Rubinstein, M. O.; Snaith, N. C., Integral moments of L-functions, Proceedings of the London Mathematical Society, Third Series, 2005, 91 (1): 33–104, ISSN 0024-6115, MR 2149530, S2CID 1435033, arXiv:math/0206018
, doi:10.1112/S0024611504015175
- Conrey, J. B.; Farmer, D. W.; Keating, Jonathan P.; Rubinstein, M. O.; Snaith, N. C., Lower order terms in the full moment conjecture for the Riemann zeta function, Journal of Number Theory, 2008, 128 (6): 1516–1554, ISSN 0022-314X, MR 2419176, S2CID 15922788, arXiv:math/0612843
, doi:10.1016/j.jnt.2007.05.013
- Conrey, J. B.; Ghosh, A., A conjecture for the sixth power moment of the Riemann zeta-function, International Mathematics Research Notices, 1998, 1998 (15): 775–780, Bibcode:1998math......7187C, ISSN 1073-7928, MR 1639551, arXiv:math/9807187
, doi:10.1155/S1073792898000476
- Edwards, H. M., Riemann's Zeta Function, New York: Dover Publications, 1974, ISBN 978-0-486-41740-0, MR 0466039 2001 pbk reprint
- Heath-Brown, D. R., The fourth power moment of the Riemann zeta function, Proceedings of the London Mathematical Society, Third Series, 1979, 38 (3): 385–422, ISSN 0024-6115, MR 0532980, doi:10.1112/plms/s3-38.3.385
- Huxley, M. N., Integer points, exponential sums and the Riemann zeta function, Number theory for the millennium, II (Urbana, IL, 2000), A K Peters: 275–290, 2002, MR 1956254
- Huxley, M. N., Exponential sums and the Riemann zeta function. V, Proceedings of the London Mathematical Society, Third Series, 2005, 90 (1): 1–41, ISSN 0024-6115, MR 2107036, doi:10.1112/S0024611504014959
- Ingham, A. E., Mean-Value Theorems in the Theory of the Riemann Zeta-Function, Proc. London Math. Soc., 1928, s2–27 (1): 273–300, doi:10.1112/plms/s2-27.1.273
- Ingham, A. E., On the estimation of N(σ,T), The Quarterly Journal of Mathematics, Second Series, 1940, 11 (1): 291–292, Bibcode:1940QJMat..11..201I, ISSN 0033-5606, MR 0003649, doi:10.1093/qmath/os-11.1.201
- Karatsuba, Anatoly; Voronin, Sergei, The Riemann zeta-function, de Gruyter Expositions in Mathematics 5, Berlin: Walter de Gruyter & Co., 1992, ISBN 978-3-11-013170-3, MR 1183467
- Keating, Jonathan P.; Snaith, N. C., Random matrix theory and ζ(1/2+it), Communications in Mathematical Physics, 2000, 214 (1): 57–89, Bibcode:2000CMaPh.214...57K, CiteSeerX 10.1.1.15.8362
, ISSN 0010-3616, MR 1794265, S2CID 11095649, doi:10.1007/s002200000261
- Lindelöf, Ernst, Quelques remarques sur la croissance de la fonction ζ(s), Bull. Sci. Math., 1908, 32: 341–356
- Motohashi, Yõichi, A relation between the Riemann zeta-function and the hyperbolic Laplacian, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV, 1995, 22 (2): 299–313, ISSN 0391-173X, MR 1354909
- Motohashi, Yõichi, The Riemann zeta-function and the non-Euclidean Laplacian, Sugaku Expositions, 1995, 8 (1): 59–87, ISSN 0898-9583, MR 1335956
- Titchmarsh, Edward Charles, The theory of the Riemann zeta-function 2nd, The Clarendon Press Oxford University Press, 1986, ISBN 978-0-19-853369-6, MR 0882550
- Voronin, S.M., L/l058960, Hazewinkel, Michiel (编), 数学百科全书, Springer, 2001, ISBN 978-1-55608-010-4