三角形,又稱三邊形,是由三条线段顺次首尾相连,或不共線的三點兩兩連接,所组成的一个闭合的平面几何图形,是最基本和最少邊的多边形。
一般用大写英语字母
、
和
为三角形的顶点标号;用小写英语字母
、
和
表示边;用
、
和
給角標號,又或者以
這樣的顶点标号来表示。
銳角三角形的所有內角均為銳角。
鈍角三角形是其中一角為鈍角的三角形,其余兩角均小於90°。
有一个角是直角(90°)的三角形为直角三角形。成直角的两条边称为「直角邊」(cathetus),直角所对的边是「斜邊」(hypotenuse);或最長的邊稱為「弦」,底部的一邊稱作「勾」(又作「句」),另一邊稱為「股」。斜邊乘上斜邊上的高÷2=勾股相乘÷2=此直角三角形面積(ch=ab)
直角三角形各邊與角度的關係,可以三角比表示。
三條邊邊長皆不相等的三角形稱為不等邊三角形。
等邊三角形(又称正三角形),为三边相等的三角形。其三個內角相等,均為60°。它是銳角三角形的一種。设其边长是
,则其面積公式為
。
等邊三角形是正四面體、正八面體和正二十面體這三個正多面體面的形狀。六個边长相同的等邊三角形可以拼成一個正六邊形。
对边是指一个角对面的那条边。比如∠A的对边就是BC,∠B的对边就是AC,∠C的对边就是AB。
对边测量是全站仪的一种专项测量功能,它可以间接测量两个不可通视点之间的水平距离。该方法设站灵活,操作简单,但它的测量精度没有标注,需要通过计算求得。
等腰直角三角形只有一種形狀,其中兩个角為45度。
等腰三角形是三条边中有两条边相等(或是其中兩隻內角相等)的三角形。等腰三角形中的两条相等的边被称为「腰」,而另一条边被称为「底边」,两条腰交叉组成的那个点被称为「顶点」,它们组成的角被称为「顶角」。
等边三角形和等腰直角三角形是等腰三角形的特殊形式。
令其底边是
,腰是
,则其面積公式為
等腰三角形的对应高,角平分线和中线重合。
退化三角形是指面積為零的三角形。满足下列条件之一的三角形即可称为退化三角形:三个内角的度数为(180°,0°,0°)或(90°,90°,0°);三边其中一条边的长度为0;一条边的长度等于另外两条之和。有人认为退化三角形并不能算是三角形,這是由於它介乎於三角不等式之間,在一些資料中已否定了其中一條邊等於其餘兩條邊之和的情況。
勒洛三角形(英語:Reuleaux triangle),也譯作萊洛三角形或弧三角形,又被稱為劃粉形或曲邊三角形,是除了圓形以外,最簡單易懂的勒洛多邊形,一個定寬曲線。將一個曲線圖放在兩條平行線中間,使之與這兩平行線相切,則可以做到:無論這個曲線圖如何運動,只要它還是在這兩條平行線內,就始終與這兩條平行線相切。這個定義由十九世紀的德國工程師弗朗茨·勒洛命名。
- 三角边長不等式
- 三角形两边之和大于第三边,两边之差的绝对值小于第三边。如果兩者相等,则是退化三角形。
- 三角內外角不等式
- 三角形任意一个外角大于不相邻的一个内角。
- 三角形外角
- 三角形兩內角之和,等於第三角的外角。
- 三角形內角和
- 在歐幾里德平面內,三角形的內角和等於180°。
勾股定理,又稱畢氏定理或毕达哥拉斯定理。其斷言,若直角三角形的其中一邊
為斜邊,即
的對角
,則
。
勾股定理的逆定理亦成立,即若三角形滿足
,
則

設
为三角形外接圓半径,則

對於任意三角形:



勾股定理是本定理的特殊情况,即当角
时,
,于是
化简为
。
三角形具有穩定性,若二個三角形有以下的邊角關係確定後,它的形狀、大小就不會改變,二個三角形即為全等三角形。全等三角形的判斷準則有以下幾種:
- SSS(Side-Side-Side,邊、邊、邊):各三角形的三條邊的長度都對應地相等。
- SAS(Side-Angle-Side,邊、角、邊):各三角形的其中兩條邊的長度都對應地相等,且兩條邊夾著的角都對應地相等。
- ASA(Angle-Side-Angle,角、邊、角):各三角形的其中兩個角都對應地相等,且兩個角夾著的邊都對應地相等。
- RHS(Right Angle-Hypotenuse-Side,直角、斜邊、邊):在直角三角形中,斜邊及一條直角邊對應地相等。[1][註 1]
- AAS(Angle-Angle-Side,角、角、邊):各三角形的其中兩個角都對應地相等,且其中一組對應角的對邊也對應地相等。
SSA(Side-Side-Angle、邊、邊、角)不能保证两个三角形全等,除非該角大於等於90°,此時可以保證全等。[2]:34[3]
- AA(Angle-Angle,角、角):各三角形的其中兩個角的都對應地相等。(或稱AAA(Angle-Angle-Angle,角、角、角))
- 三邊成比例(3 sides proportional):各三角形的三條邊的長度都成同一比例。
- 兩邊成比例且夾角相等(ratio of 2 sides, inc.∠):各三角形的兩條邊之長度都成同一比例,且兩條邊之夾角都對應地相等。(或稱 2 sides proportional, inc. ∠ equal)
三角形中有著一些特殊線段,是三角形研究的重要對象。
- 中線(median):三角形一边中点与这边所对頂点的连线段。
- 高线(altitude):从三角形一个顶点向它的对边所作的垂线段。
- 角平分线(angle bisector):平分三角形一角、一个端点在这一角的对边上的线段。
- 垂直平分線(perpendicular bisector):通過三角形一边中点与該边所垂直的线段,又稱中垂线。
以上特殊線段,每個三角形均有三條,且三線共點。
设在
中,若三边
、
、
的中線分别为
、
、
,则:



设在
中,連接三个顶点
、
、
上的高分別记作
、
、
,則:



其中
。
设在
中,若三个角
、
、
的角平分线分别为
、
、
,则:



三角形的內心(Incenter) 、外心(Circumcenter)、垂心(Orthocenter) 及形心(Centroid)稱為三角形的四心,定義如下:
关于三角形的四心,有这样的一首诗:
“
|
內心全靠角平分,
外心中點垂線伸,
垂心垂直畫三高,
形心角連線中心。
|
”
|
垂心(蓝)、形心(黄)和外心(绿)能連成一線,且成比例1:2,稱為歐拉線,與九點圓的圓心(紅)四點共線,為垂心和形心線段的中點。
連同以下的旁心,合稱為三角形的五心:
設外接圆半径為
, 内切圆半径為
,則:


其中
為三角形面積;
為三角形半周長,
三角形的面積
是底邊
與高
乘積的一半,即:
,
其中的高是指底邊與對角的垂直距離。
證明
三角形的面積可表示為一長方形面積的一半。
從右圖可知,將兩個全等三角形相拼,可得一平行四邊形。而將該平行四邊形分割填補,正好能得到一個面積等於
的長方形。因此原來的三角形面積為
。
證畢。
設
為已知的兩邊,
為該兩邊的夾角,則三角形面積是:
。
證明
三角形的高h能以正弦的定義表示。
觀察右圖,根據正弦的定義:
。
因此:
。
將此式代入基本公式,可得:
。
證畢。
、
為已知的兩角,
為該兩角的夾邊,則三角形面積是:
。
證明
三角形的面積能從兩角及其夾邊求得。
從正弦定理可知:

代入
,得:
。
注意到
,因此:
![{\displaystyle {\begin{aligned}A&={\frac {a^{2}\sin \beta \sin \gamma }{2\sin[180^{\circ }-(\beta +\gamma )]}}\\&={\frac {a^{2}\sin \beta \sin \gamma }{2\sin(\beta +\gamma )}}\\\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5b89d1a8b04836b7ba80972fe0f1b3aedb7280e5)
證畢。
海倫公式,其表示形式為:
,
其中
等於三角形的半周長,即:

秦九韶亦求過類似的公式,稱為三斜求積法:
![{\displaystyle A={\sqrt {{\frac {1}{4}}{\left[c^{2}a^{2}-\left({\frac {c^{2}+a^{2}-b^{2}}{2}}\right)^{2}\right]}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e6f2fbc21365f1afa144d659370d9cb5869a12be)
也有用幂和来表示的公式:
[註 2]
證明
將海倫公式略為變形,知
![{\displaystyle 16A^{2}=[(a+b)+c][(a+b)-c]\times [c+(a-b)][c-(a-b)]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7253baad63f0b4d87117038d3c2aa440ea007206)
多次使用平方差公式,得
![{\displaystyle {\begin{aligned}16A^{2}&=[(a+b)^{2}-c^{2}]\times [c^{2}-(a-b)^{2}]\\&=[2ab+(a^{2}+b^{2}-c^{2})]\times [2ab-(a^{2}+b^{2}-c^{2})]\\&=(2ab)^{2}-(a^{2}+b^{2}-c^{2})^{2}\\&=4a^{2}b^{2}-(a^{4}+b^{4}+c^{4}+2a^{2}b^{2}-2b^{2}c^{2}-2a^{2}c^{2})\\&=(2a^{2}b^{2}+2b^{2}c^{2}+2a^{2}c^{2})-(a^{4}+b^{4}+c^{4})\\&=2(a^{2}b^{2}+b^{2}c^{2}+a^{2}c^{2})-(a^{4}+b^{4}+c^{4})\\\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/07a06b2e97f507877bd44020043ee18f60e83f3f)
等號兩邊開根號,再同除以4,得

亦可用Cayley–Menger行列式表示的公式:

基於海伦公式在三角形擁有非常小的角度時並不數值穩定,有一個變化的計法。設
,三角形面積為:
。
由
、
及
三个顶点构成的三角形,其面积可用行列式的絕對值表示:

證明
无论三角形的顶点位置如何,该三角形总可以用一个直角梯形(或矩形)和两个直角三角形面积的和差来表示,而在直角坐标系中,已知直角梯形(或矩形)和直角三角形的顶点的坐标,该三角形的面积容易求出,即用上述的行列式表示。
若三個頂點設在三維坐標系上,即由
、
及
三个顶点构成三角形,其面積等於各自在主平面上投影面積的畢氏和,即:

設三角形三邊邊長分別為
、
及
,三角形半周長(
)為
,內切圓半徑為
,則:

若設外接圓半徑為
,則:

證明
內切圓半徑公式
三角形被三條角平分線分成三分。
根據右圖,設
,
,
,則三角形面積可表示為:

外接圓半徑公式
根據正弦定理:

因此:

設從一角出發,引出兩邊的向量為
及
,三角形的面積為:

證明
根據向量積定義,
,
其中
是兩支向量的夾角。
因此:

證畢。
在三角形
中,三个角的半角的正切和三边有如下关系:
