在数学中,张量积,记为
,可以应用于不同的上下文中如向量、矩阵、张量、向量空间、代数、拓扑向量空间和模。在各种情况下这个符号的意义是同样的:最一般的双线性运算。在某些上下文中也叫做外积。
例子:
![{\displaystyle \mathbf {b} \otimes \mathbf {a} \rightarrow {\begin{bmatrix}b_{1}\\b_{2}\\b_{3}\\b_{4}\end{bmatrix}}{\begin{bmatrix}a_{1}&a_{2}&a_{3}\end{bmatrix}}={\begin{bmatrix}a_{1}b_{1}&a_{2}b_{1}&a_{3}b_{1}\\a_{1}b_{2}&a_{2}b_{2}&a_{3}b_{2}\\a_{1}b_{3}&a_{2}b_{3}&a_{3}b_{3}\\a_{1}b_{4}&a_{2}b_{4}&a_{3}b_{4}\end{bmatrix}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1947ba11e0732b307a05edc1719ea9482d4b254a)
结果的秩为2、维数为 4×3 = 12。
这里的秩指的是“张量秩”(所需指标数),而维数计算在结果数组(阵列)中自由度的数目;矩阵的秩是 2。
代表情况是任何两个被当作矩阵的矩形数组的克罗内克积。在同维数的两个向量之间的张量积的特殊情况是并矢积。
有两个(或更多)张量积的分量的一般公式。例如,如果 U 和 V 是秩分别为 n 和 m 的两个协变张量,则它们的张量积的分量给出为
。[1]
所以两个张量的张量积的分量是每个张量的分量的普通积。
注意在张量积中,因子 V 消耗前 rank(V) 個指标,而因子 U 再消耗 rank(U) 個指标,所以
![{\displaystyle \mathrm {rank} (V\otimes U)=\mathrm {rank} (V)+\mathrm {rank} (U)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c21606978360374cdc1290e0b033a250b913a6d8)
设 U 是类型 (1,1) 的张量,带有分量 Uαβ;并设 V 是类型 (1,0) 的张量,带有分量 Vγ。则
![{\displaystyle U^{\alpha }{}_{\beta }V^{\gamma }=(U\otimes V)^{\alpha }{}_{\beta }{}^{\gamma }}](https://wikimedia.org/api/rest_v1/media/math/render/svg/14643782afc757dfdf2d8069f9a150994bf01d41)
而
。
张量积继承它的因子的所有指标。
对于矩阵这个运算通常叫做克罗内克积,用来明确结果有特定块结构在其上,其中第一个矩阵的每个元素被替代为这个元素与第二个矩阵的积。对于矩阵
和
:
。
给定多重线性映射
和
它们的张量积是多重线性函数
![{\displaystyle (f\otimes g)(x_{1},\dots ,x_{k+m})=f(x_{1},\dots ,x_{k})g(x_{k+1},\dots ,x_{k+m})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e539f59b40b89620946f1a795c07536fbdf22fa1)
在域
上的两个向量空间 V 和 W 的张量积
有通过“生成元和关系”的方法的形式定义。在这些
的关系下的等价类被叫做“张量”并指示为
。通过构造,可以证明在张量之间的多个恒等式并形成张量的代数。
要构造
,采用在
之上带有基
的向量空间,并应用(因子化所生成的子空间)下列多线性关系:
![{\displaystyle (v_{1}+v_{2})\otimes w=v_{1}\otimes w+v_{2}\otimes w}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3319371bb576261d07a1fd069d6275ffc7470865)
![{\displaystyle v\otimes (w_{1}+w_{2})=v\otimes w_{1}+v\otimes w_{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ed6832cfd2ebd7ccdd4641ba3de6908fcaef7090)
![{\displaystyle cv\otimes w=v\otimes cw=c(v\otimes w)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5db126c89b7b131a6a9c538b4b925cbe0ba7e601)
这里的
是来自适当空间的向量,而
来自底层域
。
我们可以推出恒等式
,
零在
中。
结果的张量积
自身是向量空间,它可以直接通过向量空间公理来验证。分别给定 V 和 W 基
和
,形如
的张量形成
的基。张量积的维数因此是最初空间维数的积;例如
有维数
。
张量积可以用泛性质来刻画。考虑通过双线性映射 φ 把笛卡尔积 V × W 嵌入到向量空间 X 的问题。张量积构造 V ⊗ W 与给出自
![{\displaystyle \phi (u,w)=u\otimes w}](https://wikimedia.org/api/rest_v1/media/math/render/svg/237cfc57f8ed16e4fcc67047abd979e3414de4fd)
的自然嵌入映射 φ : V × W → V ⊗ W 一起是这个问题在如下意义上的“泛”解。对于任何其他这种对(X, ψ),这里的 X 是向量空间,而 ψ 是双线性映射 V × W → X,则存在一个唯一的线性映射
![{\displaystyle T:V\otimes W\rightarrow X}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6d2b9756ebac1209880796c89c0514a480636791)
使得
。
假定这个泛性质,张量积在同构意义下的惟一性是容易验证的。
直接推论是从 V × W 到 X 的双线性映射
![{\displaystyle B(V\times W,X)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/caf4c54753c334a8e3e6aba4642c6879c8d23903)
和线性映射
![{\displaystyle L(V\otimes W,X)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/96afd25a108d18f832665bf861e42e805344843f)
的同一性。它是 ψ 到 T 的自然同构映射。
两个希尔伯特空间的张量积是另一个希尔伯特空间,其定义如下。
设
和
是两个希尔伯特空间,分别带有内积
和
。构造 H1 和H2 的张量积
如下:
考虑他们的作为线性空间的张量积
。
和
上的内积自然地扩展到
上:
由内积的双线性(Bilinearity),只需定义
![{\displaystyle \langle \phi _{1}\otimes \phi _{2},\psi _{1}\otimes \psi _{2}\rangle =\langle \phi _{1},\psi _{1}\rangle _{1}\cdot \langle \phi _{2},\psi _{2}\rangle _{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/168937e6cd371b6009b46fb60a8981186e624d24)
其中
和
即可。
现在
是一未必完备的内积空间。将
完备化,得到希尔伯特空间
,这就是 H1 和 H2作为希尔伯特空间的张量积。在希尔伯特空间的范畴中,
具有如前所述的泛性质,即它是二者在该范畴内的乘积。
如果 H1 和 H2 分别有正交基 {φk} 和 {ψl},则 {φk ⊗ ψl} 是 H1 ⊗ H2 的正交基。
在泛性质的讨论中,替代 X 为 V 和 W 的底层标量域生成空间
(
的对偶空间,包含在那个空间上的所有线性泛函),它自然的同一于在
上所有双线性函数的空间。换句或说,所有双线性泛函是在张量积上的泛函,反之亦然。
只要
和
是有限维的,在
和
之间有一个自然的同构,而对于任意维的向量空间我们只有一个包含
。所以线性泛函的张量是双线性泛函。这给我们一种新看法,把双线性泛函看做张量积自身。
- ^
类似的公式对反变以及混合型张量也成立。尽管许多情形,比如定义了一个内积,这种区分是无关的。