跳至內容

阿達馬變換

維基百科,自由的百科全書

阿達馬變換Hadamard transform),或稱沃爾什-阿達瑪轉換,是一種廣義傅立葉變換(Fourier transforms),作為變換編碼的一種在影片編碼當中使用有很久的歷史。在近來的影片編碼標準中,阿達馬變換多被用來計算SATD(一種影片殘差信號大小的衡量)。

數字信號處理大型積體電路演算法的領域中,阿達馬變換是一種簡單且重要的演算法之一,主要能針對頻譜做快速的分析。

變換矩陣

[編輯]

H.264中使用了4階和8階的阿達馬變換來計算SATD,其變換矩陣為:

SATD計算方法

[編輯]

當計算4x4塊的SATD時,先使用下面的方法進行二維的阿達馬變換:

然後計算所有係數絕對值之和並歸一化


類似的,當計算8x8塊的SATD時,先使用下面的方法進行二維的Hadamard變換:

然後計算所有係數絕對值之和並歸一化

建構阿達馬變換

[編輯]

阿達馬變換轉換主要型式為 點的轉換矩陣,其最小單位矩陣為 2x2 的阿達馬變換矩陣,以下分別為二點、四點與如何產生 點的阿達馬變換轉換步驟。

  • 二點阿達馬變換轉換:

  • 四點阿達馬變換轉換:

  • 產生 點阿達馬變換的步驟:

步驟一:


步驟二: 根據正負號次序 (Sign change,正負號改變次數) 將矩陣 (Matrix) 內的列向量做順序上的重新排列。

範例

[編輯]


特性

[編輯]
  • 正交性

其表示 Walsh-Hadamard 轉換矩陣中,不同的列向量 (Row verctor) 做內積 (Inner product) 為零。

可簡單從 Walsh-Hadamard 轉換矩陣中發現,其奇數列向量呈現左右兩邊偶對稱(Even symmetric)。反之,其偶數列向量呈現左右兩邊奇對稱(Odd symmetric)。

範例:

其運算方式為布林代數內的 XOR 邏輯閘。

其中,

  • 摺積性質 (Convolution Property)

其中 代表邏輯摺積 (Logical convolution)。

優缺點比較

[編輯]

優點

[編輯]
  • 僅需實數運算 (Real operation) 。
  • 不需乘法運算 (No multiplication) ,僅有加減法運算。
  • 有部分性質類似於離散傅立葉變換 (Discrete fourier transform) 。
  • 順向轉換 (Forward transform) 與反向轉換 (Inverse transform ) 型式為相似式。

其中 分別都為行向量 (Column vector) 。

缺點

[編輯]

應用範圍

[編輯]

阿達馬變換轉換主要為一種非常適合應用於頻域分析 (Spectrum analysis) ,去執行快速之分析。可惜的是對於摺積性質是一種邏輯摺積,與離散傅立葉變換上之摺積性質截然不同。因此,較摺積上無法取代離散傅立葉變換

主要應用範圍:

其主要是一種調變 (modulation) 與解調 (Demodultion) 之技術。

Jacket 轉換

[編輯]

廣義來說,其實阿達馬變換轉換是 Jacket 轉換中的一項特例情況,其將 即可求得。

以下為四點的 Jacket 轉換:

  • 點的 Jacket 轉換:

相關條目

[編輯]

參考文獻

[編輯]
  • Jian-Jiun Ding, Advanced Digital Signal Processing class note,the Department of Electrical Engineering, National Taiwan University (NTU), Taipei, Taiwan, 2008.
  • H. F. Harmuth,「Transmission of information by orthogonal functions,」1970.
  • Moon-Hu. Lee,「A new reverse Jacket transform and its fast algorithm,」IEEE Trans. Circuits Syst.-II, vol. 47, pp.39-46, 2000.
  • K.G.Beauchamp, "Walsh Functions and Their Applications," Academic Press,1975.
  • H. F. Harmuth, "Transmission of Information by Orthogonal Functions," Springer, 1969.