線性代數
|
|
向量 · 向量空間 · 基底 · 行列式 · 矩陣
|
|
|
「橫向的一條線(row)」的各地常用名稱 |
---|
中國大陸 | 行 |
---|
臺灣 | 列 |
---|
「縱向的一條線(column)」的各地常用名稱 |
---|
中國大陸 | 列 |
---|
臺灣 | 行 |
---|
數學中,矩陣乘法(英語:matrix multiplication)是一種根據兩個矩陣得到第三個矩陣的二元運算,第三個矩陣即前兩者的乘積,稱為矩陣積(英語:matrix product)。設是的矩陣,是的矩陣,則它們的矩陣積是的矩陣。中每一行的個元素都與中對應列的個元素對應相乘,這些乘積的和就是中的一個元素。
矩陣可以用來表示線性映射,矩陣積則可以用來表示線性映射的複合。因此,矩陣乘法是線性代數的基礎工具,不僅在數學中有大量應用,在應用數學、物理學、工程學等領域也有廣泛使用。[1][2]
矩陣相乘最重要的方法是一般矩陣乘積。它只有在第一個矩陣的行數(column,中國大陸作列數)和第二個矩陣的列數(row,中國大陸作行數)相同時才有定義。一般單指矩陣乘積時,指的便是一般矩陣乘積。若為矩陣,為矩陣,則他們的乘積(有時記做)會是一個矩陣。其乘積矩陣的元素如下面式子得出:
以上是用矩陣單元的代數系統來說明這類乘法的抽象性質。本節以下各種運算法都是這個公式的不同角度理解,運算結果相等:
左邊的圖表示出要如何計算的和元素,當是個矩陣和B是個矩陣時。分別來自兩個矩陣的元素都依箭頭方向而兩兩配對,把每一對中的兩個元素相乘,再把這些乘積加總起來,最後得到的值即為箭頭相交位置的值。
這種矩陣乘積亦可由稍微不同的觀點來思考:把向量和各係數相乘後相加起來。設和是兩個給定如下的矩陣:
-
其中
- 是由所有元素所組成的向量(column),是由所有元素所組成的向量,以此類推。
- 是由所有元素所組成的向量(row),是由所有元素所組成的向量,以此類推。
則
舉個例子來說:
左面矩陣的列為為係數表,右邊矩陣為向量表。例如,第一行是[1 0 2],因此將1乘上第一個向量,0乘上第二個向量,2則乘上第三個向量。
一般矩陣乘積也可以想為是行向量和列向量的內積。若和為給定如下的矩陣:
- 且
其中,這裡
- 是由所有元素所組成的向量,是由所有元素所組成的向量,以此類推。
- 是由所有元素所組成的向量,是由所有元素所組成的向量,以此類推。
則
即
矩陣乘法是不可交換的(即),除了一些較特別的情況。很清楚可以知道,不可能預期說在改變向量的部份後還能得到相同的結果,而且第一個矩陣的列數必須要和第二個矩陣的行數相同,也可以看出為什麼矩陣相乘的順序會影響其結果。
雖然矩陣乘法是不可交換的,但和的行列式總會是一樣的(當、是同樣大小的方陣時)。
當、可以被解釋為線性算子,其矩陣乘積會對應為兩個線性算子的複合函數,其中B先作用。
以 Google Sheet 為例,選取儲存格範圍或者使用陣列,在儲存格輸入
=MMULT({1,0,2;-1,3,1},{3,1;2,1;1,0})
在某些試算表軟體中必須必須按Ctrl+⇧ Shift+↵ Enter 將儲存格內的變數轉換為陣列
矩陣和純量的純量乘積的矩陣大小和一樣,的各元素定義如下:
若我們考慮於一個環的矩陣時,上述的乘積有時會稱做左乘積,而右乘積的則定義為
當環是可交換時,例如實數體或複數體,這兩個乘積是相同的。但無論如何,若環是不可交換的話,如四元數,他們可能會是不同的。例如,
給定兩個相同維度的矩陣可計算有阿達馬乘積(Hadamard product),或稱做逐項乘積、分素乘積(element-wise product, entrywise product)。兩個矩陣、的阿達馬乘積標記為,定義為
的矩陣。例如,
需注意的是,阿達馬乘積是克羅內克乘積的子矩陣。
給定任兩個矩陣和,可以得到兩個矩陣的直積,或稱為克羅內克乘積,其定義如下
當是一矩陣和是一矩陣時,會是一矩陣,而且此一乘積也是不可交換的。
舉個例子,
若和分別表示兩個線性算子和,便為其映射的張量乘積,
上述三種乘積都符合結合律:
以及分配律:
而且和純量乘積相容:
注意上述三個分開的表示式只有在純量體的乘法及加法是可交換(即純量體為一可交換環)時會相同。
其它參考文獻包括:
- Strassen, Volker, Gaussian Elimination is not Optimal, Numer. Math. 13, p. 354-356, 1969.
- Coppersmith, D., Winograd S., Matrix multiplication via arithmetic progressions, J. Symbolic Comput. 9, p. 251-280, 1990.
- Horn, Roger; Johnson, Charles: "Topics in Matrix Analysis", Cambridge, 1994.
- Robinson, Sara, Toward an Optimal Algorithm for Matrix Multiplication, SIAM News 38(9), November 2005.