活性係數(英語:Activity coefficient),又稱活性因子(英語:Activity factor),是熱力學中的一個係數,反映的是真實溶液中某組分i的行為偏離理想溶液的程度[1],量綱為1。引入活性係數後,適用於理想溶液的各種關係可以相應修正為適用於真實溶液。類似的,逸度係數是表示真實氣體混合物中某組分和理想行為的偏離的係數。
在理想溶液中,溶液組分i遵循拉烏爾定律:

其中
是組分i在溶液中的摩爾分數,
和
分別是組分i的分壓和飽和蒸氣壓。
而組分i的化學勢
可由下式表達:

這裡的
代表組分i在標準狀態下的化學勢。而在真實溶液中,組分i-組分i間的作用力和組分i-其他組分間的作用力並不相等,導致了組分i並不滿足拉烏爾定律,其化學勢也不滿足以上關係,即偏離了理想溶液的行為,為此吉爾伯特·牛頓·路易斯引入了活性和活性係數的概念。
定義:

這裡的
是組分i以摩爾分數所表示的活性,
則是組分i用摩爾分數所表示的活性係數。引入活性和活性係數後,拉烏爾定律可以修正為:

組分i的化學勢則可以修正為:

真實溶液的濃度越稀,溶劑的活性係數就越接近1,活性和摩爾分數近乎相等,其行為越接近理想溶液。濃度越高,活性係數越偏離1,真實溶液的行為偏差理想溶液就越大,比如對於濃度較高的電解質溶液,其活性就無法用摩爾分數取代,這一點在電化學和土壤化學中十分常見[2]。
當化學反應:
達到化學平衡時,反應物化學勢的和等於生成物化學勢的和,反應的吉布斯能變化
為0,即:

將每種物質用活性所表示的化學勢表達式代入其中得到


其中的
是反應在標準狀況下的吉布斯能變化
於是

此時的平衡常數由平時的
修正為:
![{\displaystyle K={\frac {[S]^{\sigma }[T]^{\tau }}{[A]^{\alpha }[B]^{\beta }}}\times {\frac {\gamma _{S}^{\sigma }\gamma _{T}^{\tau }}{\gamma _{A}^{\alpha }\gamma _{B}^{\beta }}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/557cd8e660e013aa553b78d42d41b14c46825152)
活性係數可以通過實驗測量和理論計算結合的方法求出,常見方法有蒸氣壓法、德拜-休克爾極限公式法、圖解積分法和測量電動勢法等:
引入活性係數後,拉烏爾定律修正為:

可通過測定某一濃度下溶液蒸汽壓和飽和蒸汽壓的比值,除以其摩爾分數,即為活性係數。
德拜-休克爾極限公式給出了某種離子i的活性係數和離子強度的關係:
[3]
其中
是離子所帶的電荷數,
是溶液中的離子強度,
是和溶劑有關的常數。
但德拜-休克爾極限公式只適用於稀溶液,對於較高濃度的電解質溶液,需要使用戴維斯公式[4]或pitzer公式[5]等修正後的方法。
對於雙組分溶液,根據吉布斯-杜安方程,於恆壓P和恆溫T下

根據用活性係數表示的化學勢

可得

代入吉布斯-杜亥姆方程:

注意到

所以

這樣,在已知其中一種組分的活性係數之後,可以通過積分求出另一種活性係數[6],或用這一關係檢驗所測得的活性係數數值是否具有熱力學一致性。