在数学上,锥状分布 (Cone-shaped distribution function)是科恩克莱斯分布 系列函数中的一种。锥状分布于西元1991年由 Yunxin Zhao、Les E. Atlas 和 Robert J. Marks 提出。本分布之核心函数
ϕ
(
t
,
τ
)
{\displaystyle \phi \left(t,\tau \right)}
于
t
,
τ
{\displaystyle t,\tau }
域之分布形似锥状,故得名。
锥状分布的定义如下
C
x
(
t
,
f
)
=
∫
−
∞
∞
∫
−
∞
∞
A
x
(
η
,
τ
)
Φ
(
η
,
τ
)
exp
(
j
2
π
(
η
t
−
τ
f
)
)
d
η
d
τ
{\displaystyle C_{x}(t,f)=\int _{-\infty }^{\infty }\int _{-\infty }^{\infty }A_{x}(\eta ,\tau )\Phi (\eta ,\tau )\exp(j2\pi (\eta t-\tau f))\,d\eta \,d\tau }
其中
A
x
(
η
,
τ
)
=
∫
−
∞
∞
x
(
t
+
τ
/
2
)
x
∗
(
t
−
τ
/
2
)
e
−
j
2
π
t
η
d
t
{\displaystyle A_{x}(\eta ,\tau )=\int _{-\infty }^{\infty }x(t+\tau /2)x^{*}(t-\tau /2)e^{-j2\pi t\eta }\,dt}
其核心函数
Φ
(
η
,
τ
)
{\displaystyle \Phi \left(\eta ,\tau \right)}
定义为
Φ
(
η
,
τ
)
=
sin
(
π
η
τ
)
π
η
τ
exp
(
−
2
π
α
τ
2
)
{\displaystyle \Phi \left(\eta ,\tau \right)={\frac {\sin \left(\pi \eta \tau \right)}{\pi \eta \tau }}\exp \left(-2\pi \alpha \tau ^{2}\right)}
其中
α
{\displaystyle \alpha }
为一可调整之参数。
由
ϕ
(
t
,
τ
)
=
F
−
1
[
Φ
(
η
,
τ
)
]
{\displaystyle \phi \left(t,\tau \right)={\mathcal {F}}^{-1}\left[\Phi \left(\eta ,\tau \right)\right]}
可得
ϕ
(
t
,
τ
)
=
{
1
τ
exp
(
−
2
π
α
τ
2
)
,
|
τ
|
≥
2
|
t
|
,
0
,
otherwise
.
{\displaystyle \phi \left(t,\tau \right)={\begin{cases}{\frac {1}{\tau }}\exp \left(-2\pi \alpha \tau ^{2}\right),&|\tau |\geq 2|t|,\\0,&{\mbox{otherwise}}.\end{cases}}}
下图为锥状分布之核心函数于
t
,
τ
{\displaystyle t,\tau }
域之大小分布
下列图形为锥状分布之核心函数于
η
,
τ
{\displaystyle \eta ,\tau }
域不同
α
{\displaystyle \alpha }
值时之大小分布
观察上图可知,我们可以透过选取适当的
α
{\displaystyle \alpha }
值得到适合的
Φ
(
η
,
τ
)
{\displaystyle \Phi \left(\eta ,\tau \right)}
以滤除掉延
τ
{\displaystyle \tau }
轴的杂讯或干扰。
当输入信号由二具有相同或相近中心频率的成分组成,使用锥状分布作为核心函数可以完全滤除交叉项。相反地,本分布无法滤除当输入信号由二具有相同或相近中心时间的成分组成所形成之交叉项。
Time frequency analysis and wavelet transform class notes (页面存档备份 ,存于互联网档案馆 ), Jian-Jiun Ding, the Department of Electrical Engineering, National Taiwan University (NTU), Taipei, Taiwan, 2007.
S. Qian and D. Chen, Joint Time-Frequency Analysis: Methods and Applications, Chap. 5, Prentice Hall, N.J., 1996.
H. Choi and W. J. Williams, “Improved time-frequency representation of multicomponent signals using exponential kernels,” IEEE. Trans. Acoustics, Speech, Signal Processing, vol. 37, no. 6, pp. 862–871, June 1989.
Y. Zhao, L. E. Atlas, and R. J. Marks, “The use of cone-shape kernels for generalized time-frequency representations of nonstationary signals,” IEEE Trans. Acoustics, Speech, Signal Processing, vol. 38, no. 7, pp. 1084–1091, July 1990.