跳转到内容

截半 (几何)

维基百科,自由的百科全书
一个截半的立方体(截半立方体)。

几何学中,截半(英语:Rectification)是一种将多边形、多面体、密铺、镶嵌或更高维的多胞体从每个边的中点开始切去顶点的一种多面体变换[1],换句话说,就是截角变换的一种特例,即截角截至中点[2]。所得到的多面体将以截面与多面体原本的面为界。考克斯特符号与施莱夫利符号将截半变换记为r,例如r{4,3},而康威记号则将截半变换记为a[3][4],例如aC,r{4,3}与aC皆代表一个截半立方体[5]

康威将截半变换称为ambo[6]。在图论演算法中,截半称为内侧图英语Medial graph

参见

[编辑]

参考文献

[编辑]
  1. ^ Weisstein, Eric W. (编). Rectification. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英语). 
  2. ^ Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8 (pp.145-154 Chapter 8: Truncation)
  3. ^ Conway Notation for Polyhedra. www.georgehart.com. [2022-10-15]. (原始内容存档于2014-11-29). 
  4. ^ Weisstein, Eric W. (编). Conway Polyhedron Notation. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英语). 
  5. ^ Weisstein, Eric W. (编), Cuboctahedron, (Archimedean solid), at MathWorld--A Wolfram Web Resource,Wolfram Research, Inc. (英语) 
  6. ^ Conway, 2008, p288 table

外部链接

[编辑]
多面体变换
原像 截角 截半 过截角 对偶 扩展英语Expansion (geometry) 全截英语Omnitruncation 交错
半变换 扭棱
node_1 p node_n1 q node_n2  node_1 p node_1 q node  node p node_1 q node  node p node_1 q node_1  node p node q node_1  node_1 p node q node_1  node_1 p node_1 q node_1  node_h p node q node  node p node_h q node_h  node_h p node_h q node_h 
t0{p,q}
{p,q}
t01{p,q}英语Truncated polyhedron
t{p,q}
t1{p,q}
r{p,q}
t12{p,q}英语Bitruncated polyhedron
2t{p,q}
t2{p,q}
2r{p,q}
t02{p,q}英语Cantellated polyhedron
rr{p,q}
t012{p,q}英语Omnitruncated polyhedron
tr{p,q}
ht0{p,q}
h{q,p}
ht12{p,q}英语Snub polyhedron
s{q,p}
ht012{p,q}英语Snub polyhedron
sr{p,q}