跳转到内容

杨-米尔斯存在性与质量间隙

维基百科,自由的百科全书

杨-米尔斯规范场论与质量间隙理论物理中规范场论的一道基础问题,必须在数学上严格证明杨-米尔斯场论存在(即需符合构造性量子场论的标准),亦要证明它们有质量间隙,即模型所预测的最轻单粒子态为正质量。2000年,克雷数学研究所悬赏各一百万元的数学七大千禧年难题,其中一道题为杨-米尔斯规范场论同质量间隙。[1]

背景

[编辑]
杨振宁

物理学中,杨-米尔斯理论是一种基于非阿贝尔群量子规范理论[2]:508。20世纪初,物理学家期待量子理论和经典场论两种思想可以融合[3]:82-83。在这一方向上,最早出现的理论是英国物理学家保罗·狄拉克1927年创立的量子电动力学,简称QED[2]:7,它提供了对电磁现象的量子描述,成为麦克斯韦理论的一个量子版本[4][5],能极为精确地解释电磁场和电磁力。自然而然的,物理学家期待后续的理论能将电磁现象与弱力强力一道统一起来[6]:2

1954年杨振宁罗伯特·米尔斯提出了杨-米尔斯理论[7],它是对QED的进一步推广[2]:481。在此基础上统一电磁力和强弱相互作用时,物理学家发现这一理论的“无质量性”成为症结所在[3]:88。经典杨-米尔斯理论的核心是一组非线性偏微分方程[8],杨-米尔斯存在性与质量间隙难题旨在证明杨-米尔斯方程组有唯一解,并且该解满足“质量间隙”这一特征[3]:90,其官方表述为:对任意紧致、单的规范群,四维欧几里得空间中的量子杨-米尔斯理论存在一个正的质量间隙[6]:6。质量间隙问题是量子色动力学理解强相互作用的理论关键,关乎理论物理学的数学基础,其解决将意味着一个数学上完整的量子规范场论的产生[6]:5

这一问题的解决前景不甚乐观,爱德华·威滕也直言“(它)对现在而言实在是太难了[3]:92。”物理学家普遍相信质量间隙的存在,但至今未能找到确凿的数学和物理学证明[9]

杨-米尔斯存在性与质量间隙问题的官方陈述由亚瑟·贾菲英语Arthur Jaffe和爱德华·威滕写出[6]

目前所知多数非凡(nontrivial)──即有相互作用──的4维量子场论皆为有截断能标英语cutoff (physics)有效场论。因多数模型的beta-函数是正的,似乎大多数这类模型皆有一支朗道极点英语Landau pole,因完全不清楚它们有没有非凡紫外定点。故此,若每一尺度上皆定义有这样的量子场论[a],它只可能为单纯的自由场论英语free field

然而,有不可交换结构群杨-米尔斯理论(无夸克)例外。它有一种性质称为渐近自由,指它有一平凡(trivial)的紫外定点。因此,可以寄望它成为非凡的构造性(constructive)四维量子场模型[b]

非交换群杨-米尔斯理论的色禁闭性已有符合理论物理严谨性的证明,但未有符合数理物理严谨性的证明[c]。基本上,换言之,过了QCD尺度(或者这里应称为禁闭尺度,因为无夸克),那些色荷粒子被色动力学的“流管”连着,所以粒子间有线性(“张力x长度)。所以胶子之类自由贺粒子不可能存在。若没有这些禁闭效应,应见到零质量的胶子;但因它们被禁闭,只见到不带色荷的胶子束缚态——胶波。凡胶波皆有质量,所以期望质量间隙的存在。

格点规范场论英语lattice gauge theory的结果令不少工作者相信,这个模型真的有禁闭现象(由Wilson圈真空期望值的下降的“面积规律”(area law)看出),但这项结果还没有符合数学的严慬性。

参见

[编辑]

注释

[编辑]
  1. ^ 必需,因它要满足公理化量子场论的公理。
  2. ^ 量子色动力学费米夸克,当然较为复杂。
  3. ^ 读者可阅读相关文章:量子色动力学)、夸克禁闭格点规范理论英语lattice gauge theory

参考文献

[编辑]
  1. ^ Jaffe A., Witten E. Quantum Yang Mills (PDF). (原始内容存档 (PDF)于2021-01-21). 
  2. ^ 2.0 2.1 2.2 Matthew D. Schwartz. Quantum Field Theory and the Standard Model. Cambridge University Press. 2013 [2015-08-06]. ISBN 9781107034730. (原始内容存档于2016-05-27). 
  3. ^ 3.0 3.1 3.2 3.3 Streater, Raymond F.; Wightman, Arthur S. PCT, Spin and Statistics, and All That. Princeton: Princeton University Press http://dx.doi.org/10.1515/9781400884230. 2001-12-31. ISBN 978-1-4008-8423-0.  缺少或|title=为空 (帮助)
  4. ^ Toichiro Kinoshita; Donald R. Yennie. The Birth of Quantum Field Theory. Quantum Electrodynamics. Advanced series on directions in high energy physics. World Scientific. 1990: 1 [2015-08-06]. ISBN 9789810202149. (原始内容存档于2016-05-29). 
  5. ^ Silvan S. Schweber. The Birth of Quantum Field Theory. QED and the Men who Made it: Dyson, Feynman, Schwinger, and Tomonaga. Princeton series in physics. Princeton University Press. 1994: 39 [2015-08-06]. ISBN 9780691033273. (原始内容存档于2016-07-23). 
  6. ^ 6.0 6.1 6.2 6.3 Arthur Jaffe and Edward Witten. Quantum Yang–Mills Theory (PDF). Clay Mathematics Institute. [2015-07-30]. (原始内容 (PDF)存档于2015-03-30). 
  7. ^ Yang, C. N.; Mills, R. Conservation of Isotopic Spin and Isotopic Gauge Invariance. Physical Review. 1954, 96 (1): 191–195. Bibcode:1954PhRv...96..191Y. doi:10.1103/PhysRev.96.191. 
  8. ^ Michael R. Douglas. Report on the Status of the Yang-Mills Millenium Prize Problem (PDF). Clay Mathematics Institute. [2015-08-08]. (原始内容存档 (PDF)于2015-09-04). 
  9. ^ A.S. Wightman; G. Velo. Fundamental Problems of Gauge Field Theory. Nato Science Series B illustrated. Springer Science & Business Media. 2013-11-11: 224 [2015-08-08]. ISBN 9781475703634. (原始内容存档于2016-05-31).