跳转到内容

平凡表示

维基百科,自由的百科全书

数学里,尤其是在群表示理论里,一个的表示若被称为是一个平凡表示的话,则表示它是被定义在一个K上的一维向量空间V,且所有于G内的元素g都会以单位映射作用在V上。对于任何一种此类的V,这种表示都会存在着,且在K上的任何两种此类的表示也都会是等价的。

尽管平凡表示的建构模式使得它看起来像是多余的,但它确实是这个理论的一个很基本的物件。例如说,当一个子表示会等价于一个平凡表示,即表示其是由不变向量所构成的。因此找寻此类的子表示便成了不变量理论所研究的所有课题了。

平凡特征是指会将所有群元素的值都取为1的特征