跳转到内容
连带勒让德函数是连带勒让德多项式的推广。
下列连带勒让德方程的解,称为连带勒让德函数
- Courant, Richard; Hilbert, David, Methods of Mathematical Physics, Volume 1, New York: Interscience Publisher, Inc, 1953 .
- Dunster, T. M., Legendre and Related Functions, Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (编), NIST Handbook of Mathematical Functions, Cambridge University Press, 2010, ISBN 978-0521192255, MR2723248
- Ivanov, A.B., L/l058030, Hazewinkel, Michiel (编), 数学百科全书, Springer, 2001, ISBN 978-1-55608-010-4
- Snow, Chester, Hypergeometric and Legendre functions with applications to integral equations of potential theory, National Bureau of Standards Applied Mathematics Series, No. 19, Washington, D.C.: U. S. Government Printing Office, 1952 [1942], MR 0048145
- Whittaker, E. T.; Watson, G. N., A Course in Modern Analysis, Cambridge University Press, 1963, ISBN 978-0-521-58807-2