海伦公式(英語:Heron's formula或Hero's formula),又譯希罗公式[1]。由古希臘數學家亞歷山大港的希羅發現,並在其於公元60年所著的《Metrica》中載有數學證明,原理是利用三角形的三條邊長求取三角形面積。亦有認為更早的阿基米德已經了解這條公式,因为《Metrica》是一部古代數學知識的結集,该公式的發現時間很有可能先於希羅的著作。[2]
假設有一個三角形,邊長分別為
,三角形的面積
可由以下公式求得:
,其中
中国南宋末年數學家秦九韶发现或知道等價的公式,其著作《數書九章》卷五第二题即三斜求积。“问沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里,里法三百步,欲知为田几何?”答曰:“三百十五顷.”其术文是:“以小斜幂併大斜幂,減中斜幂,餘半之,自乘於上;以小斜幂乘大斜幂,減上,餘四約之,爲實,一為從隅,開平方,得積。”若以大斜记为
,中斜记为
,小斜记为
,秦九韶的方法相当于下面的一般公式:
,其中
像其他中國古代的數學家一样,他的方法沒有證明。根據现代數學家吴文俊的研究,秦九韶公式可由出入相補原理得出。
由於任何
边的多邊形都可以分割成
个三角形,所以海伦公式可以用作求多邊形面積的公式。比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。
与希羅在他的著作《Metrica》中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边
的对角分别为
,则余弦定理为

利用和平方、差平方、平方差等公式,从而有
![{\displaystyle {\begin{aligned}\sin C&={\sqrt {1-\cos ^{2}C}}\\&={\sqrt {(1+\cos C)(1-\cos C)}}\\&={\sqrt {\left(1+{\frac {a^{2}+b^{2}-c^{2}}{2ab}}\right)\left(1-{\frac {a^{2}+b^{2}-c^{2}}{2ab}}\right)}}\\&={\sqrt {\left({\frac {2ab+(a^{2}+b^{2}-c^{2})}{2ab}}\right)\left({\frac {2ab-(a^{2}+b^{2}-c^{2})}{2ab}}\right)}}\\&={\sqrt {\left({\frac {(2ab+a^{2}+b^{2})-c^{2}}{2ab}}\right)\left({\frac {c^{2}-(a^{2}+b^{2}-2ab)}{2ab}}\right)}}\\&={\sqrt {\left[{\frac {(a+b)^{2}-c^{2}}{2ab}}\right]\left[{\frac {c^{2}-(a-b)^{2}}{2ab}}\right]}}\\&={\frac {\sqrt {(a+b+c)(a+b-c)(c+a-b)(c-a+b)}}{2ab}}\\&={\frac {\sqrt {(2s)(2s-2c)(2s-2b)(2s-2a)}}{2ab}}\\&={\frac {2}{ab}}{\sqrt {s(s-c)(s-b)(s-a)}}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/39eef330386a4859da03a4db850f47c1d809d251)







設
中,
。
為內心,
為三旁切圓。
四點共圓,並設此圓為圓
。
- 過
做鉛直線交
於
,再延長
,使之與圓
交於
點。再過
做鉛直線交
於
點。
- 先證明
為矩形:
,又
(圓周角相等)。
為矩形。因此,
。
內切圓半徑
,
旁切圓半徑
。且易知
。由圓冪性質得到:
。故

海倫公式可改寫成以幂和表示:
[註 1]
證明
將海倫公式略為變形,知
![{\displaystyle 16A^{2}=[(a+b)+c][(a+b)-c]\times [c+(a-b)][c-(a-b)]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7253baad63f0b4d87117038d3c2aa440ea007206)
多次使用平方差公式,得
![{\displaystyle {\begin{aligned}16A^{2}&=[(a+b)^{2}-c^{2}]\times [c^{2}-(a-b)^{2}]\\&=[2ab+(a^{2}+b^{2}-c^{2})]\times [2ab-(a^{2}+b^{2}-c^{2})]\\&=(2ab)^{2}-(a^{2}+b^{2}-c^{2})^{2}\\&=4a^{2}b^{2}-(a^{4}+b^{4}+c^{4}+2a^{2}b^{2}-2b^{2}c^{2}-2a^{2}c^{2})\\&=(2a^{2}b^{2}+2b^{2}c^{2}+2a^{2}c^{2})-(a^{4}+b^{4}+c^{4})\\&=2(a^{2}b^{2}+b^{2}c^{2}+a^{2}c^{2})-(a^{4}+b^{4}+c^{4})\\\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/07a06b2e97f507877bd44020043ee18f60e83f3f)
等號兩邊開根號,再同除以4,得
