泽田-小寺方程(Sawada-Kotera equation)是一个非线性偏微分方程:[1]
![{\displaystyle u(x,t)=-(8/3)*_{C}2^{2}-4*_{C}2^{2}*cot(_{C}1+_{C}2*x-16*_{C}2^{5}*t)^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bed1ee175233668b62bf90c76b81327a6c75f7df)
![{\displaystyle u(x,t)=-(8/3)*_{C}2^{2}-4*_{C}2^{2}*tan(_{C}1+_{C}2*x-16*_{C}2^{5}*t)^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a69c330a157c8af3afd8ff924db48be8cb7443af)
![{\displaystyle u(x,t)=-(4/3)*_{C}2^{2}-4*_{C}2^{2}*csch(_{C}1+_{C}2*x-16*_{C}2^{5}*t)^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a49b879061c5e50bba8fa3bf480d095b21bb0f2b)
![{\displaystyle u(x,t)=-(4/3)*_{C}2^{2}+4*_{C}2^{2}*sech(_{C}1+_{C}2*x-16*_{C}2^{5}*t)^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/df8ef4c7fe261f82762325d819c155a29b200cb5)
![{\displaystyle u(x,t)=(4/3)*_{C}2^{2}-4*_{C}2^{2}*csc(_{C}1+_{C}2*x-16*_{C}2^{5}*t)^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c3f9d348a0e39b3fe76543eae27a1e663da957b9)
![{\displaystyle u(x,t)=(4/3)*_{C}2^{2}-4*_{C}2^{2}*sec(_{C}1+_{C}2*x-16*_{C}2^{5}*t)^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c7daf67d37927530fb34c2576103f7c0d2f0243c)
![{\displaystyle u(x,t)=(8/3)*_{C}2^{2}-4*_{C}2^{2}*coth(_{C}1+_{C}2*x-16*_{C}2^{5}*t)^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9ab1c0aaa053a2f85808c1fd784261887d5cbb3b)
![{\displaystyle u(x,t)=(8/3)*_{C}2^{2}-4*_{C}2^{2}*tanh(_{C}1+_{C}2*x-16*_{C}2^{5}*t)^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a4451722bcc7db0f1e788059c05d29444ea3535a)
![{\displaystyle u(x,t)=-(8/3)*_{C}3^{2}+(4/3)*_{C}3^{2}*_{C}1^{2}+4*_{C}3^{2}*JacobiDN(-_{C}2-_{C}3*x-(-16*_{C}3^{5}+16*_{C}3^{5}*_{C}1^{2}-16*_{C}3^{5}*_{C}1^{4})*t,_{C}1)^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4ecc7f9dfa90a755027543ec4ffdba641a3ae7d8)
![{\displaystyle u(x,t)=-(8/3)*_{C}3^{2}*_{C}1^{2}+(4/3)*_{C}3^{2}+(-4*_{C}3^{2}+4*_{C}3^{2}*_{C}1^{2})*JacobiNC(-_{C}2-_{C}3*x-(-16*_{C}3^{5}+16*_{C}3^{5}*_{C}1^{2}-16*_{C}3^{5}*_{C}1^{4})*t,_{C}1)^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cc3639c7ab463c8a202b813184817e5c7bd08517)
![{\displaystyle u(x,t)=(4/3)*_{C}3^{2}*_{C}1^{2}+(4/3)*_{C}3^{2}-4*_{C}3^{2}*_{C}1^{2}*JacobiSN(-_{C}2-_{C}3*x-(-16*_{C}3^{5}+16*_{C}3^{5}*_{C}1^{2}-16*_{C}3^{5}*_{C}1^{4})*t,_{C}1)^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/395c0bee147acef73a3eabdc7a37e28e6d079158)
![{\displaystyle }](https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68)
![{\displaystyle }](https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68)
![{\displaystyle }](https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68)
![{\displaystyle }](https://wikimedia.org/api/rest_v1/media/math/render/svg/df4dcd61276328f7c7ec5bdc399b6e11114a2c68)
Sawada-Kotera equation traveling wave plot
|
Sawada-Kotera equation traveling wave plot
|
Sawada-Kotera equation traveling wave plot
|
Sawada-Kotera equation traveling wave plot
|
Sawada-Kotera equation traveling wave plot
|
Sawada-Kotera equation traveling wave plot
|
Sawada-Kotera equation traveling wave plot
|
Sawada-Kotera equation traveling wave plot
|
Sawada-Kotera equation traveling wave plot
|
Sawada-Kotera equation traveling wave plot
|
Sawada-Kotera equation traveling wave plot
|
Sawada-Kotera equation traveling wave plot
|
- ^ Andrei D. Polyanin,Valentin F. Zaitsev, HANDBOOK OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS, SECOND EDITION p540-542 CRC PRESS
- *谷超豪 《孤立子理论中的达布变换及其几何应用》 上海科学技术出版社
- *阎振亚著 《复杂非线性波的构造性理论及其应用》 科学出版社 2007年
- 李志斌编著 《非线性数学物理方程的行波解》 科学出版社
- 王东明著 《消去法及其应用》 科学出版社 2002
- *何青 王丽芬编著 《Maple 教程》 科学出版社 2010 ISBN 9787030177445
- Graham W. Griffiths William E.Shiesser Traveling Wave Analysis of Partial Differential p135 Equations Academy Press
- Richard H. Enns George C. McCGuire, Nonlinear Physics Birkhauser,1997
- Inna Shingareva, Carlos Lizárraga-Celaya,Solving Nonlinear Partial Differential Equations with Maple Springer.
- Eryk Infeld and George Rowlands,Nonlinear Waves,Solitons and Chaos,Cambridge 2000
- Saber Elaydi,An Introduction to Difference Equationns, Springer 2000
- Dongming Wang, Elimination Practice,Imperial College Press 2004
- David Betounes, Partial Differential Equations for Computational Science: With Maple and Vector Analysis Springer, 1998 ISBN 9780387983004
- George Articolo Partial Differential Equations & Boundary Value Problems with Maple V Academic Press 1998 ISBN 9780120644759