跳转到内容

未解決的統計學問題

维基百科,自由的百科全书

未解決的統計學問題,根据约翰·图基(John Tukey)的说法,[1]识别问题的困难远远比解决问题的困难更能拖延统计数据。戴维·科克斯(David Cox)给出了一份“一两个悬而未决统计学的问题”(实际上是22个)的清单。[2]

推理和检验

[编辑]

实验设计

[编辑]

更具哲学性质的问题

[编辑]

注释

[编辑]
  1. ^ Tukey, John W. Unsolved Problems of Experimental Statistics. Journal of the American Statistical Association. 1954, 49 (268): 706–731. JSTOR 2281535. doi:10.2307/2281535. 
  2. ^ Cox, D. R. Present Position and Potential Developments: Some Personal Views: Design of Experiments and Regression. Journal of the Royal Statistical Society. Series A (General). 1984, 147 (2): 306–315. JSTOR 2981685. doi:10.2307/2981685. 
  3. ^ Pal, Nabendu; Lim, Wooi K. A note on second-order admissibility of the Graybill-Deal estimator of a common mean of several normal populations. Journal of Statistical Planning and Inference. 1997, 63: 71–78. doi:10.1016/S0378-3758(96)00202-9. 
  4. ^ Fraser, D.A.S.; Rousseau, J. Studentization and deriving accurate p-values (PDF). Biometrika. 2008, 95: 1–16. doi:10.1093/biomet/asm093. 
  5. ^ Jordan, M. I. What are the open problems in Bayesian statistics? (PDF). The ISBA Bulletin. 2011, 18 (1): 1–5 [2022-12-12]. (原始内容存档 (PDF)于2023-03-26). 
  6. ^ Zabell, S. L. Predicting the unpredictable. Synthese. 1992, 90 (2): 205. S2CID 9416747. doi:10.1007/bf00485351. 

参考文献

[编辑]
  • Linnik, Jurii. Statistical Problems with Nuisance Parameters. American Mathematical Society. 1968. ISBN 0-8218-1570-9. 
  • Sawilowsky, Shlomo S. Fermat, Schubert, Einstein, and Behrens–Fisher: The Probable Difference Between Two Means When σ1 ≠ σ2. Journal of Modern Applied Statistical Methods. 2002, 1 (2). doi:10.22237/jmasm/1036109940可免费查阅.