跳转到内容

定義可達性

维基百科,自由的百科全书

在編譯器理論中,一個指令的定義可達性(Reaching Definition)必然是另外一個指令,而這個指令則是一個沒有交錯賦值指令的目標變數,舉例來說:

d1 : y := 3
d2 : x := y

d2中,d1為定義可達性,而在下列的範例中:

d1 : y := 3
d2 : y := 4
d3 : x := y

d1d3不再是定義可達性,因為d2使它不再可能被到達。

作為分析用途

[编辑]

定義可達性也可稱為数据流分析,它靜態的決定在程式碼當中哪些定義可以被到達,由於他相當簡單,它在教課書當中通常被使用作數據分析的經典範例。數據流匯流運算(data-flow confluence operator)則是使用聯集,而他的分析則是正向流動。定義可達性被使用在計算UD鏈以及DU鏈

資料流方程式,給定一個基本區塊 在定義可達性:

換句話說,定義可達性的集合為的前身,在控制流程圖(Control flow graph)中,包含所有在區塊前的基本區塊。定義可達性出來的,為所有定義可達性自己前身減掉那些被剃除掉的變數,再加上產生的新的定義。

我們定義通用的指令如下:

為所有賦值給變數定義的集合,是一個獨立的標籤附加在賦值的指令,那麼定義可達性的值域就是這些指令標簽。

延伸閱讀

[编辑]

另見

[编辑]