刘维尔公式(Liouville's Formula)是一个关于多重积分和欧拉积分( Γ {\displaystyle \Gamma } 函数)的公式,其形式如下:
= Γ ( p 1 ) Γ ( p 2 ) . . . Γ ( p n ) Γ ( p 1 + p 2 + . . . + p n ) ∫ 0 1 f ( u ) u p 1 + p 2 + . . . + p n − 1 d u {\displaystyle ={\frac {\Gamma \left(p_{1}\right)\Gamma \left(p_{2}\right)...\Gamma \left(p_{n}\right)}{\Gamma \left(p_{1}+p_{2}+...+p_{n}\right)}}\int _{0}^{1}f\left(u\right)u^{p_{1}+p_{2}+...+p_{n}-1}\mathrm {d} u}
其中 p 1 , p 2 , . . . , p n > 0 {\displaystyle p_{1},p_{2},...,p_{n}>0} , f ( u ) {\displaystyle f\left(u\right)} 为连续函数。[1]
用数学归纳法。 当n=1时,公式显然成立。
当n=2时,公式也成立,即
事实上,令 Ω {\displaystyle \Omega } 表示区域: x 1 ⩾ 0 , x 2 ⩾ 0 , x 1 + x 2 ⩽ 1 {\displaystyle x_{1}\geqslant 0,x_{2}\geqslant 0,x_{1}+x_{2}\leqslant 1} ,作代换 x 1 = ξ 1 , x 1 + x 2 = ξ 2 {\displaystyle x_{1}=\xi _{1},x_{1}+x_{2}=\xi _{2}} ,以及 t = ξ 1 ξ 2 {\displaystyle t={\frac {\xi _{1}}{\xi _{2}}}} ,则有
设公式对于n-1成立,今证对于n公式也成立。为此,将公式左端写为
令 ψ ( s ) = ∫ 0 1 − s f ( s + x n ) x n p n − 1 d x n {\displaystyle \psi \left(s\right)=\int _{0}^{1-s}f\left(s+x_{n}\right)x_{n}^{p_{n}-1}\mathrm {d} x_{n}}
代入上式,并利用公式对n-1成立的假定,得知上式为
利用上面已证的n=2时的公式,于是即得
= Γ ( p 1 ) Γ ( p 2 ) . . . Γ ( p n − 1 ) Γ ( p 1 + p 2 + . . . + p n − 1 ) ∫ 0 1 d s ∫ 0 1 − s f ( s + x n ) s p 1 + p 2 + . . . + p n − 1 − 1 x n p n − 1 d x n {\displaystyle ={\frac {\Gamma \left(p_{1}\right)\Gamma \left(p_{2}\right)...\Gamma \left(p_{n-1}\right)}{\Gamma \left(p_{1}+p_{2}+...+p_{n-1}\right)}}\int _{0}^{1}\mathrm {d} s\int _{0}^{1-s}f\left(s+x_{n}\right)s^{p_{1}+p_{2}+...+p_{n-1}-1}x_{n}^{p_{n}-1}\mathrm {d} x_{n}}
= Γ ( p 1 ) Γ ( p 2 ) . . . Γ ( p n − 1 ) Γ ( p 1 + p 2 + . . . + p n − 1 ) ∬ s , x n ⩾ 0 ; s + x n ⩽ 1 f ( s + x n ) s p 1 + p 2 + . . . + p n − 1 − 1 x n p n − 1 d x n {\displaystyle ={\frac {\Gamma \left(p_{1}\right)\Gamma \left(p_{2}\right)...\Gamma \left(p_{n-1}\right)}{\Gamma \left(p_{1}+p_{2}+...+p_{n-1}\right)}}\iint _{s,x_{n}\geqslant 0;s+x_{n}\leqslant 1}f\left(s+x_{n}\right)s^{p_{1}+p_{2}+...+p_{n-1}-1}x_{n}^{p_{n}-1}\mathrm {d} x_{n}}
= Γ ( p 1 ) Γ ( p 2 ) . . . Γ ( p n − 1 ) Γ ( p 1 + p 2 + . . . + p n − 1 ) ⋅ Γ ( p 1 + p 2 + . . . + p n − 1 ) Γ ( p n ) Γ ( p 1 + p 2 + . . . + p n ) ∫ 0 1 f ( u ) u p 1 + p 2 + . . . + p n − 1 d u {\displaystyle ={\frac {\Gamma \left(p_{1}\right)\Gamma \left(p_{2}\right)...\Gamma \left(p_{n-1}\right)}{\Gamma \left(p_{1}+p_{2}+...+p_{n-1}\right)}}\cdot {\frac {\Gamma \left(p_{1}+p_{2}+...+p_{n-1}\right)\Gamma \left(p_{n}\right)}{\Gamma \left(p_{1}+p_{2}+...+p_{n}\right)}}\int _{0}^{1}f\left(u\right)u^{p_{1}+p_{2}+...+p_{n}-1}\mathrm {d} u}
证明完毕。[1]