File:Newton optimization vs grad descent.svg
页面内容不支持其他语言。
外观
此SVG文件的PNG预览的大小:521 × 600像素。 其他分辨率:208 × 240像素 | 417 × 480像素 | 667 × 768像素 | 889 × 1,024像素 | 1,779 × 2,048像素 | 813 × 936像素。
原始文件 (SVG文件,尺寸为813 × 936像素,文件大小:48 KB)
描述Newton optimization vs grad descent.svg |
English: A comparison of gradient descent (green) and Newton's method (red) for minimizing a function (with small step sizes). Newton's method uses curvature information to take a more direct route.
Polski: Porównanie metody najszybszego spadku(linia zielona) z metodą Newtona (linia czerwona). Na rysunku widać linie poszukiwań minimum dla zadanej funkcji celu. Metoda Newtona używa informacji o krzywiźnie w celu zoptymalizowania ścieżki poszukiwań. |
日期 | (UTC) |
来源 | self-made with en:Matlab. Tweaked in en:Inkscape |
作者 | Oleg Alexandrov |
Public domainPublic domainfalsefalse |
我,本作品著作权人,释出本作品至公有领域。这适用于全世界。 在一些国家这可能不合法;如果是这样的话,那么: 我无条件地授予任何人以任何目的使用本作品的权利,除非这些条件是法律规定所必需的。 |
Source code
% Comparison of gradient descent and Newton's method for optimization
function main()
% the ploting window
figure(1); clf; hold on; axis equal; axis off;
% colors
red=[0.867 0.06 0.14];
blue = [0, 129, 205]/256;
green = [0, 200, 70]/256;
black = [0, 0, 0];
white = 0.99*[1, 1, 1];
% graphing settings
lw=3; arrowsize=0.06; arrow_type=2;
fs=13;
% the function whose contours will be plotted, and its partials
C = [0.2, 4, 0.4, 1, 1.5]; % Tweak f by tweaking C
f=inline('(C(1)*(x-0.4).^4+C(2)*x.^2+C(3)*(y+1).^4+C(4)*y.^2+C(5)*x.*y-1)', 'x', 'y', 'C');
fx=inline('(4*C(1)*(x-0.4).^3+2*C(2)*x+C(5)*y)', 'x', 'y', 'C');
fy=inline('(4*C(3)*(y+1).^3+2*C(4)*y+C(5)*x)', 'x', 'y', 'C');
fxx=inline('(12*C(1)*(x-0.4).^2+2*C(2))', 'x', 'y', 'C');
fxy=inline('C(5)', 'x', 'y', 'C');
fyy=inline('(12*C(3)*(y+1).^2+2*C(4))', 'x', 'y', 'C');
plot_contours(f, C, blue, white, lw);
% step size
alpha=0.025;
% initial guess
V0=[-0.2182, -1.2585];
x=V0(1); y = V0(2);
z=x; w=y;
% run several iterations of gradient descent and Newton's method
X=[x]; Y=[y]; Z = [z]; W=[w];
for i=0:200
% grad descent
u=fx(x, y, C);
v=fy(x, y, C);
x=x-alpha*u; y=y-alpha*v;
X = [X, x]; Y = [Y, y];
% newton's method
u=fx(z, w, C);
v=fy(z, w, C);
mxx=fxx(z, w, C);
mxy=fxy(z, w, C);
myy=fyy(z, w, C);
M = [mxx, mxy; mxy, myy];
V = M\[u; v];
u = V(1);
v = V(2);
z=z-alpha*u; w=w-alpha*v;
Z = [Z, z]; W = [W, w];
end
plot(X, Y, 'color', green, 'linewidth', lw);
plot(Z, W, 'color', red, 'linewidth', lw);
% plot text
small = 0.03;
m = length(Z); V = [Z(m), W(m)];
text(V0(1)-2*small, V0(2)-2*small, 'x_0', 'fontsize', fs);
text(V(1)+small, V(2)+small, 'x', 'fontsize', fs);
% some small balls, to hide some imperfections
small_rad= 0.015;
ball(V0(1),V0(2), small_rad, blue);
ball(V(1),V(2), small_rad, blue);
% save to eps ans svg
saveas(gcf, 'Newton_optimization_vs_grad_descent.eps', 'psc2')
% plot2svg('Newton_optimization_vs_grad_descent.svg')
function plot_contours(f, C, color, color2, lw)
% Calculate f on a grid
Lx1=-2; Lx2=2; Ly1=-2; Ly2=2;
N=60; h=1/N;
XX=Lx1:h:Lx2;
YY=Ly1:h:Ly2;
[X, Y]=meshgrid(XX, YY);
Z=f(X, Y, C);
% the contours
h=0.3; l0=-1; l1=0.7;
l0=h*floor(l0/h);
l1=h*floor(l1/h);
Levels=-[l0:1.5*h:0 0:h:l1 0.78];
% Plot the contours with 'contour' in figure(2), and then with 'plot' in figure(1).
% This is to avoid a bug in plot2svg, it can't save output of 'contour'.
figure(2); clf; hold on; axis equal; axis off;
xmin = 1000; ymin = xmin; xmax = -xmin; ymax = -ymin;
for i=1:length(Levels)
figure(2);
[c, stuff] = contour(X, Y, Z, [Levels(i), Levels(i)]);
[m, n]=size(c);
if m > 1 & n > 0
% extract the contour from the contour matrix and plot in figure(1)
l=c(2, 1);
x=c(1,2:(l+1)); y=c(2,2:(l+1));
figure(1); plot(x, y, 'color', color, 'linewidth', 0.66*lw);
xmin = min(xmin, min(x)); xmax = max(xmax, max(x));
ymin = min(ymin, min(y)); ymax = max(ymax, max(y));
end
end
figure(1);
% some dummy text, to expand the saving window a bit
small = 0.04;
plot(xmin-small, ymin-small, '*', 'color', color2);
plot(xmax+small, ymax+small, '*', 'color', color2);
function arrow(start, stop, thickness, arrow_size, sharpness, arrow_type, color)
% Function arguments:
% start, stop: start and end coordinates of arrow, vectors of size 2
% thickness: thickness of arrow stick
% arrow_size: the size of the two sides of the angle in this picture ->
% sharpness: angle between the arrow stick and arrow side, in radians
% arrow_type: 1 for filled arrow, otherwise the arrow will be just two segments
% color: arrow color, a vector of length three with values in [0, 1]
% convert to complex numbers
i=sqrt(-1);
start=start(1)+i*start(2); stop=stop(1)+i*stop(2);
rotate_angle=exp(i*sharpness);
% points making up the arrow tip (besides the "stop" point)
point1 = stop - (arrow_size*rotate_angle)*(stop-start)/abs(stop-start);
point2 = stop - (arrow_size/rotate_angle)*(stop-start)/abs(stop-start);
if arrow_type==1 % filled arrow
% plot the stick, but not till the end, looks bad
t=0.5*arrow_size*cos(sharpness)/abs(stop-start); stop1=t*start+(1-t)*stop;
plot(real([start, stop1]), imag([start, stop1]), 'LineWidth', thickness, 'Color', color);
% fill the arrow
H=fill(real([stop, point1, point2]), imag([stop, point1, point2]), color);
set(H, 'EdgeColor', 'none')
else % two-segment arrow
plot(real([start, stop]), imag([start, stop]), 'LineWidth', thickness, 'Color', color);
plot(real([stop, point1]), imag([stop, point1]), 'LineWidth', thickness, 'Color', color);
plot(real([stop, point2]), imag([stop, point2]), 'LineWidth', thickness, 'Color', color);
end
function ball(x, y, r, color)
Theta=0:0.1:2*pi;
X=r*cos(Theta)+x;
Y=r*sin(Theta)+y;
H=fill(X, Y, color);
set(H, 'EdgeColor', 'none');
此文件中描述的项目
描绘内容
创作作者 简体中文(已转写)
某些值没有维基数据项目
版权状态 简体中文(已转写)
受版权保护,并由版权所有者释出于公有领域 简体中文(已转写)
著作权持有者释出至公有领域 简体中文(已转写)
文件历史
点击某个日期/时间查看对应时刻的文件。
日期/时间 | 缩略图 | 大小 | 用户 | 备注 | |
---|---|---|---|---|---|
当前 | 2007年6月23日 (六) 04:58 | 813 × 936(48 KB) | Oleg Alexandrov | {{Information |Description= |Source=self-made with en:Matlab. Tweaked in en:Inkscape |Date= ~~~~~ |Author= Oleg Alexandrov }} {{PD-self}} |
文件用途
以下页面使用本文件:
全域文件用途
以下其他wiki使用此文件:
- ca.wikipedia.org上的用途
- en.wikipedia.org上的用途
- fa.wikipedia.org上的用途
- he.wikipedia.org上的用途
- pl.wikipedia.org上的用途
- pt.wikipedia.org上的用途
- uk.wikipedia.org上的用途
隐藏分类: