跳至內容

File:Kerr Newman De Sitter (KNdS) Horizons & Ergospheres.png

頁面內容不支援其他語言。
這個檔案來自維基共享資源
維基百科,自由的百科全書

Kerr_Newman_De_Sitter_(KNdS)_Horizons_&_Ergospheres.png (620 × 464 像素,檔案大小:78 KB,MIME 類型:image/png


摘要

描述
English: The horizons and ergosheres for the Kerr Newman De Sitler (KNdS) spacetime with a high Λ:M ratio.
日期
來源 自己的作品, Code: Link
作者 Yukterez (Simon Tyran, Vienna)
其他版本
Animation (a=0.9, ℧=0.4, Λ=0.001...0.155)
Different snapshot (a=0.9, ℧=0.4, Λ=0.136)
Orbit in the Kerr Newman De Sitter spacetime
Separate depictions for the horizons and ergospheres
Regular Kerr black hole (a=0.99, ℧=0, Λ=0)

授權條款

我,本作品的著作權持有者,決定用以下授權條款發佈本作品:
w:zh:共享創意
姓名標示 相同方式分享
您可以自由:
  • 分享 – 複製、發佈和傳播本作品
  • 重新修改 – 創作演繹作品
惟需遵照下列條件:
  • 姓名標示 – 您必須指名出正確的製作者,和提供授權條款的連結,以及表示是否有對內容上做出變更。您可以用任何合理的方式來行動,但不得以任何方式表明授權條款是對您許可或是由您所使用。
  • 相同方式分享 – 若要根據本素材進行再混合、轉換或創作,則必須以與原作相同或相容的授權來發布您的作品。


Overview

The Kerr–Newman–de–Sitter metric (KNdS) [1][2] is the one of the most general stationary solutions of the Einstein–Maxwell equations in [1] that describes the spacetime geometry in the region surrounding an electrically charged, rotating mass embedded in an expanding universe. It generalizes the Kerr–Newman metric by taking into account the cosmological constant .

Boyer–Lindquist coordinates

In (+, −, −, −) signature and in natural units of the KNdS metric is[3][4][5][6]






with all the other , where is the black hole's spin parameter, its electric charge and [7] the cosmological constant with as the time-independent Sitter universe#Mathematical expression Hubble parameter. The electromagnetic 4-potential is



The frame-dragging angular velocity is



and the local frame-dragging velocity relative to constant positions (the speed of light at the ergosphere)



The escape velocity (the speed of light at the horizons) relative to the local corotating ZAMO (zero angular momentum observer) is



The conserved quantities in the equations of motion



where is the four velocity, is the test particle's specific charge and the Maxwell–Faraday tensor



are the total energy



and the covariant axial angular momentum



The for differentiation overdot stands for differentiation by the testparticle's proper time or the photon's affine parameter, so .

To get coordinates we apply the transformation




and get the metric coefficients





and all the other , with the electromagnetic vector potential



Defining ingoing lightlike worldlines give a light cone on a spacetime diagram.

The horizons are at and the ergospheres at . This can be solved numerically or analytically. Like in the Kerr and Kerr–Newman metrics the horizons have constant Boyer-Lindquist , while the ergospheres' radii also depend on the polar angle .

This gives 3 positive solutions each (including the black hole's inner and outer horizons and ergospheres as well as the cosmic ones) and a negative solution for the space at in the antiverse[8][9] behind the ring singularity, which is part of the probably unphysical extended solution of the metric.

With a negative (the Anti–de–Sitter variant with an attractive cosmological constant) there are no cosmic horizon and ergosphere, only the black hole related ones.

In the Nariai limit[10] the black hole's outer horizon and ergosphere coincide with the cosmic ones (in the Schwarzschild–de–Sitter metric to which the KNdS reduces with that would be the case when ).

The Ricci scalar for the KNdS metric is , and the Kretschmann scalar


Further reading

For the transformation see here and the links therein. More tensors and scalars for the KNdS metric: in Boyer Lindquist and Null coordinates, higher resolution: video, advised references: arxiv:1710.00997 & arxiv:2007.04354. More snapshots of this series can be found here, those are also under the creative commons license.

References

  1. (2008). "Kerr-Newman-de Sitter black holes with a restricted repulsive barrier of equatorial photon motion". Physical Review D 58: 084003. DOI:10.1088/0264-9381/17/21/312.
  2. (2009). "Exact spacetimes in Einstein's General Relativity". Cambridge University Press, Cambridge Monographs in Mathematical Physics. DOI:10.1017/CBO9780511635397.
  3. (2023). "Motion equations in a Kerr-Newman-de Sitter spacetime". Classical and Quantum Gravity 40 (13). DOI:10.1088/1361-6382/accbfe.
  4. (2014). "Gravitational lensing and frame-dragging of light in the Kerr–Newman and the Kerr–Newman (anti) de Sitter black hole spacetimes". General Relativity and Gravitation 46 (11): 1818. DOI:10.1007/s10714-014-1818-8.
  5. (2018). "Kerr-de Sitter spacetime, Penrose process and the generalized area theorem". Physical Review D 97 (8): 084049. DOI:10.1103/PhysRevD.97.084049.
  6. (2021). "Null Hypersurfaces in Kerr-Newman-AdS Black Hole and Super-Entropic Black Hole Spacetimes". Classical and Quantum Gravity 38 (4): 045018. DOI:10.1088/1361-6382/abd3e0.
  7. Gaur & Visser: Black holes embedded in FLRW cosmologies (2023) class=gr-qc, arxiv eprint=2308.07374
  8. Andrew Hamilton: Black hole Penrose diagrams (JILA Colorado)
  9. Figure 2 in (2020). "Influence of Cosmic Repulsion and Magnetic Fields on Accretion Disks Rotating around Kerr Black Holes". Universe. DOI:10.3390/universe6020026.
  10. Leonard Susskind: Aspects of de Sitter Holography, timestamp 38:27: video of the online seminar on de Sitter space and Holography, Sept 14, 2021

說明

添加單行說明來描述出檔案所代表的內容

在此檔案描寫的項目

描繪內容

創作作者 Chinese (Hong Kong) (已轉換拼寫)

沒有維基數據項目的某些值

作者姓名字串 繁體中文 (已轉換拼寫):​Yukterez (Simon Tyran, Vienna)
維基媒體使用者名稱 繁體中文 (已轉換拼寫):​Yukterez

著作權狀態 繁體中文 (已轉換拼寫)

有著作權 繁體中文 (已轉換拼寫)

共享創意署名-相同方式共享4.0國際 Chinese (Hong Kong) (已轉換拼寫)

檔案來源 Chinese (Taiwan) (已轉換拼寫)

上傳者的原創作品 繁體中文 (已轉換拼寫)

多媒體型式 繁體中文 (已轉換拼寫)

image/png

檔案歷史

點選日期/時間以檢視該時間的檔案版本。

日期/時間縮⁠圖尺寸用戶備⁠註
目前2023年9月11日 (一) 00:04於 2023年9月11日 (一) 00:04 版本的縮圖620 × 464(78 KB)Yukterezmatch the color of the cosmic ergosphere with the black hole one after they merged
2023年8月22日 (二) 22:30於 2023年8月22日 (二) 22:30 版本的縮圖620 × 464(35 KB)Yukterezshow the disintegration of the ergosphere
2023年8月16日 (三) 20:13於 2023年8月16日 (三) 20:13 版本的縮圖640 × 464(42 KB)YukterezUploaded own work with UploadWizard

沒有使用此檔案的頁面。

全域檔案使用狀況

以下其他 wiki 使用了這個檔案:

詮釋資料