A Hasse diagram of divisibility relationships among regular numbers up to 400. As shown by the horizontal light red lines, the vertical position of each number is proportional to its logarithm. Inspired by similar diagrams in a paper by Kurenniemi [1].
本作品已被作者英语维基百科的David Eppstein释出到公有领域。这适用于全世界。 在一些国家这可能不合法;如果是这样的话,那么: David Eppstein无条件地授予任何人以任何目的使用本作品的权利,除非这些条件是法律规定所必需的。Public domainPublic domainfalsefalse
Source code
The Python source code for generating this image:
from math import log
limit = 400
radius = 17
margin = 4
xscale = yscale = 128
skew = 0.285
def A051037():
yield 1
seq = [1]
spiders = [(2,2,0,0),(3,3,0,1),(5,5,0,2)]
while True:
x,p,i,j = min(spiders)
if x != seq[-1]:
yield x
seq.append(x)
spiders[j] = (p*seq[i+1],p,i+1,j)
def nfactors(h,p):
nf = 0
while h % p == 0:
nf += 1
h //= p
return nf
seq = []
for h in A051037():
if h > limit:
break
seq.append((h,nfactors(h,2),nfactors(h,3),nfactors(h,5)))
leftmost = max([k for h,i,j,k in seq])
rightmost = max([j for h,i,j,k in seq])
leftwidth = int(0.5 + log(5) * leftmost * xscale + radius + margin)
rightwidth = int(0.5 + log(3) * rightmost * xscale + radius + margin)
width = leftwidth + rightwidth
height = int(0.5 + log(limit) * yscale + 2*(radius + margin))
def place(h,i,j,k):
# logical coordinates
x = j * log(3) - k * log(5) + i * skew
y = log(h)
# physical coordinates
x = (x*xscale) + leftwidth
y = (-y*yscale) + height - radius - margin
return (x,y)
print '''<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg xmlns="http://www.w3.org/2000/svg" version="1.1" width="%d" height="%d">''' % (width,height)
print ' <g style="fill:none;stroke:#ffaaaa;">'
l = 1
base = 1
while l <= limit:
y = -yscale*log(l) + height - radius - margin
print ' <path d="M0,%0.2fL%d,%0.2f"/>' % (y,width,y)
l += base
if l == 10*base:
base = l
print " </g>"
print ' <g style="fill:none;stroke-width:1.5;stroke:#0000cc;">'
def drawSegment(p,q):
x1,y1=p
x2,y2=q
print ' <path d="M%0.2f,%0.2fL%0.2f,%0.2f"/>' % (x1,y1,x2,y2)
for h,i,j,k in seq:
x,y = place(h,i,j,k)
if i > 0:
drawSegment(place(h//2,i-1,j,k),(x,y))
if j > 0:
drawSegment(place(h//3,i,j-1,k),(x,y))
if k > 0:
drawSegment(place(h//5,i,j,k-1),(x,y))
print " </g>"
print ' <g style="fill:#ffffff;stroke:#000000;">'
for h,i,j,k in seq:
x,y = place(h,i,j,k)
print ' <circle cx="%0.2f" cy="%0.2f" r="%d"/>' % (x,y,radius)
# pairs of first value with size: size of that value
fontsizes = {1:33, 5:30, 10:27, 20:24, 100:20, 200:18}
for h,i,j,k in seq:
x,y = place(h,i,j,k)
if h in fontsizes:
print " </g>"
print ' <g style="font-family:Times;font-size:%d;text-anchor:middle;">' % fontsizes[h]
lower = fontsizes[h] / 3.
print ' <text x="%0.2f" y="%0.2f">%d</text>' %(x,y+lower,h)
print " </g>"
print "</svg>"
原始上传日志
The original description page was here. All following user names refer to en.wikipedia.
2007-03-14 05:08 David Eppstein 1363×809×0 (13167 bytes) A [[Hasse diagram]] of [[divisibility]] relationships among [[regular number]]s up to 400. Inspired by similar diagrams in a paper by Kurenniemi [http://www.beige.org/projects/dimi/CSDL2.pdf].