跳转到内容

File:Kerr Newman De Sitter (KNdS) Horizons & Ergospheres.png

页面内容不支持其他语言。
這個文件來自維基共享資源
维基百科,自由的百科全书

Kerr_Newman_De_Sitter_(KNdS)_Horizons_&_Ergospheres.png (620 × 464像素,文件大小:78 KB,MIME类型:image/png


摘要

描述
English: The horizons and ergosheres for the Kerr Newman De Sitler (KNdS) spacetime with a high Λ:M ratio.
日期
来源 自己的作品, Code: Link
作者 Yukterez (Simon Tyran, Vienna)
其他版本
Animation (a=0.9, ℧=0.4, Λ=0.001...0.155)
Different snapshot (a=0.9, ℧=0.4, Λ=0.136)
Orbit in the Kerr Newman De Sitter spacetime
Separate depictions for the horizons and ergospheres
Regular Kerr black hole (a=0.99, ℧=0, Λ=0)

许可协议

我,本作品著作权人,特此采用以下许可协议发表本作品:
w:zh:知识共享
署名 相同方式共享
本文件采用知识共享署名-相同方式共享 4.0 国际许可协议授权。
您可以自由地:
  • 共享 – 复制、发行并传播本作品
  • 修改 – 改编作品
惟须遵守下列条件:
  • 署名 – 您必须对作品进行署名,提供授权条款的链接,并说明是否对原始内容进行了更改。您可以用任何合理的方式来署名,但不得以任何方式表明许可人认可您或您的使用。
  • 相同方式共享 – 如果您再混合、转换或者基于本作品进行创作,您必须以与原先许可协议相同或相兼容的许可协议分发您贡献的作品。


Overview

The Kerr–Newman–de–Sitter metric (KNdS) [1][2] is the one of the most general stationary solutions of the Einstein–Maxwell equations in [1] that describes the spacetime geometry in the region surrounding an electrically charged, rotating mass embedded in an expanding universe. It generalizes the Kerr–Newman metric by taking into account the cosmological constant .

Boyer–Lindquist coordinates

In (+, −, −, −) signature and in natural units of the KNdS metric is[3][4][5][6]






with all the other , where is the black hole's spin parameter, its electric charge and [7] the cosmological constant with as the time-independent Sitter universe#Mathematical expression Hubble parameter. The electromagnetic 4-potential is



The frame-dragging angular velocity is



and the local frame-dragging velocity relative to constant positions (the speed of light at the ergosphere)



The escape velocity (the speed of light at the horizons) relative to the local corotating ZAMO (zero angular momentum observer) is



The conserved quantities in the equations of motion



where is the four velocity, is the test particle's specific charge and the Maxwell–Faraday tensor



are the total energy



and the covariant axial angular momentum



The for differentiation overdot stands for differentiation by the testparticle's proper time or the photon's affine parameter, so .

To get coordinates we apply the transformation




and get the metric coefficients





and all the other , with the electromagnetic vector potential



Defining ingoing lightlike worldlines give a light cone on a spacetime diagram.

The horizons are at and the ergospheres at . This can be solved numerically or analytically. Like in the Kerr and Kerr–Newman metrics the horizons have constant Boyer-Lindquist , while the ergospheres' radii also depend on the polar angle .

This gives 3 positive solutions each (including the black hole's inner and outer horizons and ergospheres as well as the cosmic ones) and a negative solution for the space at in the antiverse[8][9] behind the ring singularity, which is part of the probably unphysical extended solution of the metric.

With a negative (the Anti–de–Sitter variant with an attractive cosmological constant) there are no cosmic horizon and ergosphere, only the black hole related ones.

In the Nariai limit[10] the black hole's outer horizon and ergosphere coincide with the cosmic ones (in the Schwarzschild–de–Sitter metric to which the KNdS reduces with that would be the case when ).

The Ricci scalar for the KNdS metric is , and the Kretschmann scalar


Further reading

For the transformation see here and the links therein. More tensors and scalars for the KNdS metric: in Boyer Lindquist and Null coordinates, higher resolution: video, advised references: arxiv:1710.00997 & arxiv:2007.04354. More snapshots of this series can be found here, those are also under the creative commons license.

References

  1. (2008). "Kerr-Newman-de Sitter black holes with a restricted repulsive barrier of equatorial photon motion". Physical Review D 58: 084003. DOI:10.1088/0264-9381/17/21/312.
  2. (2009). "Exact spacetimes in Einstein's General Relativity". Cambridge University Press, Cambridge Monographs in Mathematical Physics. DOI:10.1017/CBO9780511635397.
  3. (2023). "Motion equations in a Kerr-Newman-de Sitter spacetime". Classical and Quantum Gravity 40 (13). DOI:10.1088/1361-6382/accbfe.
  4. (2014). "Gravitational lensing and frame-dragging of light in the Kerr–Newman and the Kerr–Newman (anti) de Sitter black hole spacetimes". General Relativity and Gravitation 46 (11): 1818. DOI:10.1007/s10714-014-1818-8.
  5. (2018). "Kerr-de Sitter spacetime, Penrose process and the generalized area theorem". Physical Review D 97 (8): 084049. DOI:10.1103/PhysRevD.97.084049.
  6. (2021). "Null Hypersurfaces in Kerr-Newman-AdS Black Hole and Super-Entropic Black Hole Spacetimes". Classical and Quantum Gravity 38 (4): 045018. DOI:10.1088/1361-6382/abd3e0.
  7. Gaur & Visser: Black holes embedded in FLRW cosmologies (2023) class=gr-qc, arxiv eprint=2308.07374
  8. Andrew Hamilton: Black hole Penrose diagrams (JILA Colorado)
  9. Figure 2 in (2020). "Influence of Cosmic Repulsion and Magnetic Fields on Accretion Disks Rotating around Kerr Black Holes". Universe. DOI:10.3390/universe6020026.
  10. Leonard Susskind: Aspects of de Sitter Holography, timestamp 38:27: video of the online seminar on de Sitter space and Holography, Sept 14, 2021

说明

添加一行文字以描述该文件所表现的内容

此文件中描述的项目

描繪內容

某些值没有维基数据项目

文件历史

点击某个日期/时间查看对应时刻的文件。

日期/时间缩⁠略⁠图大小用户备注
当前2023年9月11日 (一) 00:042023年9月11日 (一) 00:04版本的缩略图620 × 464(78 KB)Yukterezmatch the color of the cosmic ergosphere with the black hole one after they merged
2023年8月22日 (二) 22:302023年8月22日 (二) 22:30版本的缩略图620 × 464(35 KB)Yukterezshow the disintegration of the ergosphere
2023年8月16日 (三) 20:132023年8月16日 (三) 20:13版本的缩略图640 × 464(42 KB)YukterezUploaded own work with UploadWizard

没有页面链接到本图像。

全域文件用途

以下其他wiki使用此文件:

元数据