A是B的子集,B是A的超集。
子集(英語:subset)亦稱部分集合,為某集合中部分元素的集合;關係相反時則稱作父集、母集、超集。子集與父集的关系被称为“包含”。
如果集合A的任意一个元素都是集合B的元素(任意a∈A,则a∈B),则集合A称为集合B的子集,记为
或
,读作“集合A包含于集合B”或“集合B包含集合A”。
即:
,有
,则
。
若
和
为集合,且
的所有元素都是
的元素,则可表示為:
是
的子集(或称
包含于
);![{\displaystyle A\subseteq B}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b09068bd2f7ba899aeb883ebe670b2ad07b0c851)
是
的父集/超集(或称
包含
);![{\displaystyle B\supseteq A}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b2fd7d8e0fa00d29c0d6a35ab2c3d4cd636bd136)
任何集合
皆是本身的子集(
)。而
的子集中不等于
的集合,称为真子集,若
是
的真子集,写作
。
假设有
和
两个集合,如果
中的每个元素都是
的元素,则:
是
的子集,记作![{\displaystyle A\subseteq B}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b09068bd2f7ba899aeb883ebe670b2ad07b0c851)
- 也可以说
是
的超集,记作![{\displaystyle B\supseteq A}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b2fd7d8e0fa00d29c0d6a35ab2c3d4cd636bd136)
如果
是
的子集,但
不等于
(即
中至少存在一个元素不在
集合中),则:
是
的真子集,记作![{\displaystyle A\subsetneqq B}](https://wikimedia.org/api/rest_v1/media/math/render/svg/76b5046c0f318612eb9edecaa531d6360fea5c9e)
- 也可以说
是
的真超集,记作![{\displaystyle B\supsetneqq A}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ddf40bf522816cc5d343735604817625b45363ad)
ISO 80000-2标准中定义了两种符号搭配:[1]
表示子集关系,
表示真子集关系。使用的作品如[2][3][4]
表示子集关系,
表示真子集关系。使用的作品如[5]:p.6
- 集合
是集合
的真子集。
- 自然数集合是有理数集合的真子集。
- 集合
是大于2000的素数
是集合
是大于1000的奇数
的真子集。
- 任意集合是其自身的子集,但不是真子集。
- 空集,写作
,是任意集合
的子集。空集总是其他集合的真子集,除了其自身。
A是B的子集。
命题1:空集是任意集合的子集。
这个命题说明:包含是一种偏序关系。
命题2:若
是集合,则:
- 自反性:
![{\displaystyle A\subseteq A}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f1ce5093be9e30238b83393aed738eafd3a43030)
- 反对称性:
且
当且仅当![{\displaystyle A=B}](https://wikimedia.org/api/rest_v1/media/math/render/svg/045cafe35b1e9c9ac889481fd7178d6f59a77fdb)
- 传递性:
- 若
且
则![{\displaystyle A\subseteq C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c52a0a9fb646e916904c85763d980be597191ad2)
这个命题说明:对任意集合
,
的幂集按包含排序是一个有界格,与上述命题相结合,则它是一个布尔代数。
命题3:若
是集合
的子集,则:
- 存在一个最小元和一个最大元:
(
由命題1給出)
- 存在并运算:
![{\displaystyle A\subseteq A\cup B}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fcf7730ac2d5e58ce8fb4ded84055998a1ac6d89)
- 若
且
则![{\displaystyle A\cup B\subseteq C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9cdb1727a9bbdd71e93d93c8ac77260b8ac163c8)
- 存在交运算:
![{\displaystyle A\cap B\subseteq A}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f7bd25ce29ca352002ab4f7e70da86f7221ef33e)
- 若
且
则![{\displaystyle C\subseteq A\cap B}](https://wikimedia.org/api/rest_v1/media/math/render/svg/69112de8c5e892fa37c6461132bf0f6eb68abd67)
命题4:对任意两个集合
和
,下列表述等价:
![{\displaystyle A\subseteq B}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b09068bd2f7ba899aeb883ebe670b2ad07b0c851)
![{\displaystyle A\cap B=A}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a6cd897334b251544a95c9f7d226eeabba68c100)
![{\displaystyle A\cup B=B}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fb61f2348c407083f1d6a215173298bc13b5824a)
![{\displaystyle A-B=\varnothing }](https://wikimedia.org/api/rest_v1/media/math/render/svg/24da4fae72f6d05c5b4db3b89a19bc5286e3ed16)
![{\displaystyle B'\subseteq A'}](https://wikimedia.org/api/rest_v1/media/math/render/svg/308d13b73acc8f790a6b5cf92e7817993ed6d2d2)
这个命题说明:表述"
",和其他使用并集,交集和补集的表述是等价的,即包含关系在公理体系中是多余的。
- ^ ISO 80000-2:2019 Quantities and units — Part 2: Mathematics ISO 80000-2:2019 Quantities and units — Part 2: Mathematics. ISO. 2019-08 [2023-7-24]. (原始内容存档于2023-03-13) (英语).
- ^ 離散數學-第三章, [2012-09-07], (原始内容存档于2012-07-03)
- ^ 剑桥大学国际考试院IGCSE数学考纲 (PDF), [2015-03-14], (原始内容存档 (PDF)于2016-03-04)
- ^ Subsets and Proper Subsets (PDF), [2012-09-07], (原始内容 (PDF)存档于2013-01-23)
- ^ Rudin, Walter, Real and complex analysis 3rd, New York: McGraw-Hill, 1987, ISBN 978-0-07-054234-1, MR 0924157